データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

データ・アナリティクス入門

見える化で進化する学び方

なぜ計画的分析が必要? 「やみくもに分析しない」という考え方が特に印象に残りました。アウトプットのイメージは人それぞれ異なるため、事前にすり合わせを行うことは、自身の経験からも非常に重要だと実感しています。実際に、プロセスを「what」「where」「why」「how」に分けて見える化することで、優先順位をつけて整理しながら分析を進めることができたため、この手法を今後も続けていきたいと考えています。 どう使うと効果的? また、分析の際に習った複数のフレームワークを活用することは、とても有効でした。特に、複数人で作業を行う場合、様々な切り口からのアイデアを出し合い、一度収束させることで、抜け漏れを防ぎながら優先順位を明確にできたという実感があります。さらに、バイアスに関しても事前に目線を合わせることができたため、今後もこの方法を積極的に取り入れていきたいと思います。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

データ・アナリティクス入門

仮説×分析!新たな解決のヒント

仮説検証はどう進む? 問題解決においては、複数の仮説を立て、その仮説を迅速に検証していくプロセスが重要です。特に、3Cや4Pといった既存のフレームワークを活用することで、仮説の立案は効率化し、スピードが向上します。 分析方法は何が変わる? これまで、webサイトの売上やアクセス分析においては、場当たり的に変動要因を探っていた面がありました。しかし、3Cや4Pなどの枠組みを取り入れることで、従来気づかなかった切り口や新しい視点からの仮説を導き出すことが可能になると実感しました。 選択肢は広がる? また、3Pや4Cをはじめとする各種フレームワークを再度学ぶことで、仮説の立案における選択肢が広がります。どの状況にどのフレームワークが適しているのかを理解し、これらを積極的にwebサイト分析に活用することが、より効果的な問題解決につながると考えます。

データ・アナリティクス入門

段階的アプローチで着実成長

講義で何を実感した? これまでの講義を通じて、分析のフレームワークや思考の順番をしっかりと理解することができました。段階を追って課題を解き明かすことで、最初から一気に取り組むよりも、より複雑な問題に対処できると実感しています。 課題設定はどう進む? データ分析の業務では、ただ急いで分析を実施するのではなく、まず解決すべき課題を明確にし、仮説を立てながら進めることが大切だと感じます。また、必要に応じてデータを扱う関係者と意見交換しながら検証を進めることで、より確実な結果にたどり着けると思います。 日々の工夫は何? 今後は、学んだフレームワークや仮説検証の流れを自分の言葉で他者に説明し、日々の業務に取り入れる工夫をしていきたいと考えています。小さな実践を積み重ねることで、自分の思考プロセスが自然に身につき、学びを習慣化できるよう努めていきます。

データ・アナリティクス入門

全体像から磨く問題解決術

今週の学びは、以下の2点です。 問題解決の手法は? まず、問題解決のフレームワークである「MECE/もれなくダブりなく」を徹底的に磨くことの重要性を感じました。この切り口で問題や課題に取り組むと、全体像の解像度が格段に上がるという実感があります。 問題の特定方法は? 次に、最初に問題を正確に特定することがポイントであると学びました。最初の当たりがずれてしまうと、その後の原因分析や課題解決の方向性にも影響が出るため、問題や原因が的確に把握されているかを常に確認する必要があると感じています。 対策の基準は? また、これらは業界や具体的な問題解決の種類を問わず、普遍的なスキルであると理解しています。日常業務では他者の解決策を参考にする機会が多いですが、それぞれの対策が正確に特定された問題とその原因に合致しているか、今後も意識して確認していきたいと思います。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right