データ・アナリティクス入門

普段の数字が広げる知の扉

代表値の理解は? 平均値や中央値など、日常的に目にする代表値は理解しやすく、復習にも非常に役立ちました。一方で、普段はあまり接する機会のない冪根といった内容を新たに学ぶことで、知識の幅を広げることができた点が大変有意義でした。 数字の裏側は? また、業務で扱う数字だけでなく、経営陣が提示する数値についても、その背景や算出方法を十分に把握する重要性を感じました。今後は、根拠をしっかりと意識しながらデータを活用することで、クライアントに対してより的確な判断や提案ができるよう努めたいと思います。

データ・アナリティクス入門

初挑戦!フレームワークで深掘り学び

どうして原因探る? 問題の原因を探るため、what、where、why、howという流れを意識し、その時々に応じた適切なフレームワークを活用することで、より効率的かつ効果的に分析ができると実感しました。 なぜ知識足りない? これまで体系的に経営学やマーケティングを学んだ経験がなかったため、自身のインプットが不足していると痛感しています。特に、フレームワークに関しては、その基本概念を理解していなければ活用が難しいため、具体的な活用例などと合わせながらしっかりと学んでいきたいと考えています。

データ・アナリティクス入門

平均値だけじゃ見えない本質

平均だけで判断? これまで会社内のデータが平均値で提示されることが多く、自分でも平均値だけで判断していた点を反省しました。平均値に加え標準偏差も確認することで、より正確な分析が可能になると考えています。 群ごとに違いは? 市場データを分析する際は、まずヒストグラムを用いてデータのばらつきを把握し、いくつかの群に分けることにしました。各群の標準偏差も確認し、群間での差が出ないよう注意しています。また、各群の平均値や中央値を算出することで、従来の分析との違いを明確にしていくつもりです。

データ・アナリティクス入門

ロジックで掴む成長のヒント

MECEってどう使うの? MECEの考え方は、必要以上に厳密に適用せず、優先度の高い事項をクリアにするための一助として活用することが大切だと感じました。分析の軸がぶれず、本来の目的に沿って問題点の整理ができる点が魅力です。 ロジックツリーは何? また、ロジックツリーを用いて要素を段階的に分解する流れは、問題解決における鍵となる要素の特定に非常に役立ちました。当初の計画値通りに進まない理由について、よりロジカルに原因を洗い出すことができたため、示唆出しの納得感が一層高まりました。

データ・アナリティクス入門

代表値だけじゃ見えない発見

分析の誤りに気づく? データを分析する際、手法に誤りがあると仮説さえも誤ってしまうことを実感しました。代表値だけに頼るのではなく、散らばりなど他の視点にも注目し、分析や加工の方法の知識を豊富に持っておくことの重要性を学びました。 新発見の秘訣は? 業務においては、従来の方法を踏襲することが多い中でも、新たな発見や提案を生むためにはアプローチを変えることが鍵だと感じています。数字の見方一つで、これまで気付かなかった視点や発見があることに気づかされました。

データ・アナリティクス入門

疑問から始まる探究ストーリー

どう仮説は組み立てる? 仮説を立てる際には、さまざまな視点、すなわち異なる背景や経験を持つ人々からの意見が必要であり、MECEな仮説を構築する上で重要であることを理解しました。また、日常業務で自社や自部門の課題に目を向け、そこでの仮説立案を習慣化することの大切さも認識しています。 なぜ現象を疑う? そのため、業務の中で起こる現象やデータに対して「なぜこのようになるのだろう?」と疑問を持ち、一歩踏み込んで考察する姿勢を身につけたいと感じています。

データ・アナリティクス入門

数字の裏を読む学びの秘訣

代表値の正しい選択法は? 代表値として単純平均に頼りがちですが、まずはデータ全体のばらつきや分布を十分に把握することが重要です。その上で、目的に合わせた適切な代表値を選び、比較する必要があります。 数字の羅列はなぜ不十分? また、単なる数字の羅列ではデータの特徴を正確に捉えることは難しいため、ヒストグラムなどを活用し可視化することが求められます。グラフは、プレゼン資料の飾りではなく、データを正確に理解するための必須のプロセスです。

データ・アナリティクス入門

仮説の違いが導く気づき

仮説の違いは何? 初めは、仮説を検討する際に、結論の仮説と問題解決の仮説の違いを深く考えずに検証していたことに気づかされました。両者の違いを意識することで、より豊かな気づきが得られる可能性があると感じました。 新たな視点は何? 次週以降は、仮説思考をさらに学びながら、現在取り組んでいる業務で提示した仮説以外の視点も模索し、問題解決プロセスを意識して進めていきたいと考えています。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right