データ・アナリティクス入門

数字で読み解く採用の秘密

データ比較の留意点は? データの比較アプローチには、大きく分けて2つの方法がある。1つは、1つの数字に集約して評価する方法、もう1つはデータをグラフ化して視覚的に捉える方法である。 数字集約の意義は? 数字に集約する方法に関しては、加重平均、幾何平均、標準偏差といった手法があり、今回初めて耳にしたため、新たな数値の捉え方を学べたのが印象的だった。 採用分布は何が見える? また、採用が決定した方と不採用となった方の現年収およびオファー年収の分布を可視化することで、採用決定や辞退に関する傾向が明確になる可能性を感じた。 今後のヒアリングはどう? 今後の選考では、現年収、希望年収、最低希望年収についてヒアリングを実施し、データを着実に蓄積していく。また、他社で採用が決定しながら辞退に至った方からも決定年収についてヒアリングを行い、自社のオファー年収との比較ができるように進めていきたい。

データ・アナリティクス入門

目的意識で切り拓くデータ分析

目的は何のため? データ分析を始める際は、まず「何のためにこのデータを分析するのか」という目的意識を常に持つことが大切です。あらかじめ、どのような答えが得られるかをイメージしながら、分析に取り掛かると良いでしょう。 仮説と可視化の意義は? また、データ分析のステップとして、仮説思考に基づいたロードマップを設定することで、全体の目的や認識を共有し、より納得のいく結果が導けます。さらに、データを可視化すると、さまざまな視点や切り口、解釈の可能性が広がり、複数の判断軸を持つことができます。 実務の判断はどう? 実務では、データを活用する「ここぞというタイミング」を見極めることも重要です。そのために、何を解決したいのか、どのようなデータが必要か、データの収集方法やその後の展開についても具体的に考える必要があります。まずは、手元にあるWeb解析のデータを確認し、整理を進めてみましょう。

データ・アナリティクス入門

平均で解く成長のヒント

各平均の意味は? 今回の学習では、平均の種類について再確認できた点が非常に印象的でした。単純平均だけではなく、幾何平均や加重平均といった、数字の根拠となるデータや分布の理解が求められる手法について、より深く考える機会となりました。 成長率の計り方は? また、期間全体の成長率を表現する方法が実践可能であることを知り、これまで感じていた疑問が解消されました。具体的には、自身の業務において商品のサイズ構成比や部署の成長率を算出する際、全体の加重平均や過去数年の傾向を示すための幾何平均が有用であると感じました。 実践スキルの磨き方は? とはいえ、数式自体は難しく感じたため、今後はエクセルを使用した計算方法など、より実践的なアウトプットスキルを磨く必要があると思っています。プレゼンテーションや説明の際に、根拠となる平均値を具体的なグラフなどで示せるよう、引き続き学びを深めていきたいと考えています。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

MECEで広がる分析の新境地

MECEの理解を深めるには? MECEの考え方は非常にわかりやすく、理解することができました。これまで要因解析に活用していたロジックツリーを、別の目的の分析にも使えると知り、非常に驚きました。また、売上を単価と数量に分けて分析する方法も、実践しやすく感じました。 数字の分解で深掘り分析 要因分析では、数字を分解して深掘りすることが広く応用できると考えています。MECEをフレームワークとして理解したので、実際に分析する際には層別が漏れなく、重複がないかを図示して見える化し、確認していきます。 精度向上を目指す次のステップ 定性的な要因分析も含めて、まずはロジックツリーを実際に描いてみることから始めます。その上で、MECEの観点で層別が適切にできているかを図を用いて確認し、分析の精度を向上させたいです。また、これらの図を使って関係者と共有し、レビューすることで、より精度アップを目指します。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

実践と洞察で未来を拓く

実践学習の効果は? 学習内容を実践的に活用しようとする姿勢が素晴らしく、データ分析においてもその洞察力が十分に発揮できると感じました。今後は、可能性や必要なデータをより具体的に整理していくことで、さらに充実した学びに繋がると思います。 市場環境の見直しは? また、現状の市場状況や競合環境を鑑み、製品サイクルを考慮した上で複数の課題を明確にすることが重要だと感じました。優先順位を明確にし、実現可能な対策を現場と共に検討・実行していく中で、どのようなチェックポイントが必要になるのかも考えていきたいと思います。 部内議論の方向性は? さらに、まずは部内で現在考えている課題を洗い出し、複数の案を出し合う場を設けると良いと感じました。その上で、今後の進め方についてマーケティングや営業の各方面とも相談しながら、各自の役割分担を実施して課題解決に向けた取り組みを進めていくことが望ましいと考えます。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

データ・アナリティクス入門

仮説と挑戦で切り拓く未来

業務の姿勢はどう? 私は、ありたい姿やあるべき姿を常に意識しながら業務に取り組むことの大切さを実感しました。単に課題解決のための行動にとどまらず、広い視野で業務全体や自分自身のキャリアを見つめることで、さらに良い成果につながると感じています。 仮説の見極め方は? また、目標や理想とするゴールを常に意識すること=仮説を立て行動することが重要だと学びました。その上で、その仮説が正しいかどうかをフラットに判断できるために、最短時間でデータ解析を行う能力を身に付ける必要性も感じています。目的やゴールを明確にすることが、日々の訓練として非常に有用だと思います。 業務の目的は何? さらに、どんな些細な業務であっても、まずはその目的や背景を把握し、仮説や想定を立て、それを裏付ける理由付けやデータに基づいて解析する。こうした一連のプロセスを常に実践し、自分の働き方に定着させたいと考えています。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right