データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

データ・アナリティクス入門

学びの先に広がる未来

知識活用はどうする? これまで自己研鑽してきた内容について、ただ知識を積み重ねるだけでなく、具体的にどのように活用するかまで考えてこなかったと実感しました。すぐにはイメージしにくい現実の場面で、学んだ知識がどう生かされるかを真剣に考えることで、新たな視点が得られると感じています。そのため、単なる習得にとどまらず「学習の先」をじっくり考える時間を持つことの大切さに気づかされました。 データの見直しはどう? また、直近ではデータ分析の作業に直接関わることはありませんが、自身が担当する事業におけるさまざまなデータについて再度整理する必要性を感じています。どのようなデータが存在し、どのように収集され、どのような活用方法(結果の仮説)が考えられるのかを洗い直すとともに、これから集めるべきデータについても検討し、具体的な収集方法を年度末までに模索し、準備を始めることができるのではないかと思いました。

データ・アナリティクス入門

順路で解く成長の秘訣

段階分析はなぜ? 何か課題が発生した際、経験則だけで原因を探ろうとしがちですが、プロセスごとに段階的に分析することの大切さを学びました。「何が」「どこで」「なぜ」「どのように」という順番を意識することで、問題点を明確に把握できると実感しています。また、A/Bテストにおいては、条件を揃えることが重要である点も大いに勉強になりました。 なぜ集客難航? 現在、コンテンツの企画・販売に携わる中で、集客に関してかなりの困難を感じています。対象を広げるという対策を検討していますが、その前に、問題の所在と原因を絞り込む必要があると考えています。 新企画はどう進む? まもなく新たな企画・コンテンツ制作が始まるため、これまでの課題を整理し、具体的な提案につなげていきたいと思います。また、前回の販売時には十分なデータが取得できなかったことから、今後はデータ収集の方法についても検討していく方針です。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

データ・アナリティクス入門

データ分析とプレゼンの質を上げるコツを学ぶ

分析における比較の重要性を学ぶ 分析とは比較であることを学びました。データを扱う際にはサンプリングバイアスに注意し、何と何を比較するか、そして目的に沿った分析を行うための問いが重要であると理解しました。すぐに飛びつかず、まず一呼吸おいてからデータを取り扱うことが大切です。 土地選定にはどんなデータが必要? 土地の選定に際しては、エリアや距離といった比較可能なデータを蓄積し、入居率や地代との関係を探ることが必要だと感じました。また、社内説明資料を作成する際には、データの表現方法としてグラフや図をどう表現するかを学んでいきたいです。 事業組成には説得力向上が必須 事業組成の中では、なぜその事業を行うべきか、比較軸を立てた上で理解しやすいデータやグラフを使用し、プレゼン資料の説明力を高めることが必要です。これにより、事業化の打率を向上させることで部署や関係各所に貢献できるでしょう。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

データ・アナリティクス入門

仮説で未来を描く学びの一歩

仮説検討はどう進む? 幅広い視野に基づいて複数の仮説を立てることが問題解決につながると理解しました。検討の幅を広げるために、3Cや4Pといったフレームワークを活用し、意図を持ったデータ収集を行う重要性を再認識することができました。 市場の未来をどう読む? また、停滞気味の既存事業にブレイクスルーをもたらすため、将来の市場状況に基づいた仮説をもとに自社があるべき姿を描き、そこに至る戦略や戦術を検討する意義を感じました。この視点は、スタッフ個々の目標設定やKPIの策定にも活かせると考えています。 業績見通しはどう考える? さらに、自部門の過去の業績推移と今後10年間の見通しを基にして、停滞領域の立て直しや注力ポイントの整理を実施し、次年度の部門目標の設定につなげる必要があると感じました。この1年を次の5年、10年のための第一歩とするため、仮説に基づいた変化を実践していきたいです。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

データ・アナリティクス入門

フレームワークで開く学びの扉

仮説はどう生まれる? まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。 私の仮説偏りはなぜ? また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。 実践はどう進む? 具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。

データ・アナリティクス入門

比較で見える戦略策定の極意

データ分析の重要性を再確認 「分析は比較」という考え方は、実務において非常に重要であると実感しています。単にデータを集計するだけでは、判断材料とはなりません。そのため、比較や判断が可能な形での分析を常に心掛けています。今回の講義でも、この視点の重要性を再確認しました。 数値比較で客観性を持たせるには? 事業戦略を策定する際には、過去の実績などの比較数値を用いることで、客観的な判断が可能になります。また、「Apple to Apple」の話が示すように、比較する対象を明確にし、条件が一定であることを確保することで、適切な結論を導き出せると考えます。 チームで共有すべき比較意識 さらに、戦略書やプレゼン資料を作成する場合、目的をもって適切な比較対象を用いることで、説得力を高めることが重要です。チームメンバーにもこの意識を共有し、齟齬なく業務を進められるよう努めています。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right