データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

データ・アナリティクス入門

仮説で未来を描く学びの一歩

仮説検討はどう進む? 幅広い視野に基づいて複数の仮説を立てることが問題解決につながると理解しました。検討の幅を広げるために、3Cや4Pといったフレームワークを活用し、意図を持ったデータ収集を行う重要性を再認識することができました。 市場の未来をどう読む? また、停滞気味の既存事業にブレイクスルーをもたらすため、将来の市場状況に基づいた仮説をもとに自社があるべき姿を描き、そこに至る戦略や戦術を検討する意義を感じました。この視点は、スタッフ個々の目標設定やKPIの策定にも活かせると考えています。 業績見通しはどう考える? さらに、自部門の過去の業績推移と今後10年間の見通しを基にして、停滞領域の立て直しや注力ポイントの整理を実施し、次年度の部門目標の設定につなげる必要があると感じました。この1年を次の5年、10年のための第一歩とするため、仮説に基づいた変化を実践していきたいです。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

データ・アナリティクス入門

フレームワークで開く学びの扉

仮説はどう生まれる? まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。 私の仮説偏りはなぜ? また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。 実践はどう進む? 具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。

データ・アナリティクス入門

比較で解く原因の奥義

原因をどのように特定? 問題の原因を特定するためには、まずプロセスに分解し、そのプロセスごとに原因であるという仮説を立て検証する必要があると学びました。特に、条件を同じにして比較対象の要素をひとつだけ変更するA/Bテストの手法は、原因検証に非常に有効であると理解しました。この「分析とは比較である」という本学習の原則は、派生していっても常にその根本に忠実でなければならないと感じました。 多角的な検証の鍵は? また、問題の原因を直感で捉えるのではなく、What、Where、Why、Howの4つのステップで明確に切り分けることで、決め打ちにせず多角的な検討が可能になると実感しました。これにより、他者への仮説説明もしやすくなると同時に、A/Bテストを実施する際にもどの要素を置き換えるかを明確にしてトライアンドエラーのプロセスを進めることができ、より納得のいく検証が行えると感じました。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

データ・アナリティクス入門

仮説と共に挑む成長の旅

仮説整理のコツは? 問題解決に取り組む上で、仮説を持つことの重要性を学びました。多くの仮説を出すことが望ましい一方で、考えが散らばってしまう可能性があるため、フレームワークを活用して体系的に整理することが有効です。また、仮説を立てる際には、その目的がコミュニケーションか問題解決か、あるいは過去・現在・将来のどの視点に基づいているのかを明確にしておくことが大切だと感じました。 原因特定の秘訣は? 問題発生時の原因特定をファシリテートする際には、議論が発散しないよう、仮説が結論に至るものなのか問題解決を促すものなのかを分類し、メンバーと共有することが必要だと実感しました。さらに、社内で問題解決のプロセスを議論する際の枠組みとして仮説を共通言語とすることで、検証マインドの向上、説得力の強化、問題意識の向上、スピードアップ、行動の精度向上につながることを丁寧に伝えていく意義を感じました。

データ・アナリティクス入門

仮説と対話で生む新発見

仮説検証の工夫は? 仮説を立て、データで検証するプロセスは従来通り行っていますが、決め打ちにしない姿勢には驚きを覚えました。説得力を高めるために、反論を排除する情報に踏み込むことが重要であり、3Cや4Pなどの視点で網羅性を持たせる思考法も、仮説が浮かばないときには非常に有用だと感じました。 忙しさの中で何を考える? 忙しい状況下では、決め打ちの仮説からデータを作成し、仮説が合っているという安心感にとらわれがちです。しかし、まずは仕事にゆとりを持ち、反論が出ないまで情報を網羅的に検討することが大切だと改めて実感しました。 共に歩む協働は? また、データの加工作業を一人で行っていると手が回らなくなることが多いため、今後はチームで協働することを意識していきたいと思います。裁量権を活かしつつ、新年度からは担当部署の変更を検討し、より良い組織作りを目指していきたいです。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

比較で見える戦略策定の極意

データ分析の重要性を再確認 「分析は比較」という考え方は、実務において非常に重要であると実感しています。単にデータを集計するだけでは、判断材料とはなりません。そのため、比較や判断が可能な形での分析を常に心掛けています。今回の講義でも、この視点の重要性を再確認しました。 数値比較で客観性を持たせるには? 事業戦略を策定する際には、過去の実績などの比較数値を用いることで、客観的な判断が可能になります。また、「Apple to Apple」の話が示すように、比較する対象を明確にし、条件が一定であることを確保することで、適切な結論を導き出せると考えます。 チームで共有すべき比較意識 さらに、戦略書やプレゼン資料を作成する場合、目的をもって適切な比較対象を用いることで、説得力を高めることが重要です。チームメンバーにもこの意識を共有し、齟齬なく業務を進められるよう努めています。

データ・アナリティクス入門

賃貸営業に役立つロジカル思考の実践

ステップ思考で目標達成? これまで漠然と進めていたことについて、「What」「Where」「Why」「How」というステップで考えることで、目標に早く到達できると感じました。また、ロジックツリーを用いて、もれなく重複なく(MECE)の分析方法を学びました。しかし、頭で理解するだけでなく、やはり実践を通じた訓練が必要だとも感じました。 業務データ活用の重要性 私は賃貸住宅の入居者募集業務を担当しています。物件データや毎月の入居者・退去者のデータをもとに、どのような傾向があるのかを見極め、売上や利益を伸ばすための営業戦略に応用できそうです。 視覚化で理論を実践? さらに、ロジックツリーやMECEについても、理論の理解だけでなく、実際に手を動かして試してみることが重要だと感じました。日常業務の様々な場面で、可能な限り図や文字を用いて視覚化し、訓練して習得していきたいと思います。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right