データ・アナリティクス入門

明確な結論が導く成長

解決すべき問題は? 当日演習中、解決したい問題を明確にすることが、自分の実務において不足していた点であると実感しました。結論のイメージを持つことで、分析すべき項目の選定やアウトプット時のグラフ選択など、躓きやすい箇所の解決につながると感じました。 問題点の見極めは? 演習では、全体から問題点の箇所に焦点を絞っていくプロセスが示され、実践経験と重なる部分が多くありました。実務において、これまで問題解決の各ステップの「どこ」に位置しているかを意識していなかったため、今回学んだプロセスを通して、自分の現在の位置を客観的に捉えることの重要性を再認識しました。 グラフ選択はどうする? また、グラフの選び方に関しては、まずその種類や役割(たとえば、差異を伝える、比率を示すなど)を理解することが必要です。仮説や伝えたいメッセージを明確にした上で、直感的にピンとくるグラフを選ぶこと、そして伝える相手の好みや傾向を把握しつつ、複数のグラフを比較検討するアプローチが有効だと感じました。 どう改善するの? 実務を振り返る中で、学んだステップに照らして「できていること」と「改善できること」があると実感しました。全てを完璧に実行するのは難しいですが、ひとまず一度しっかりと振り返り、今後の業務遂行の効率化に活かしていきたいと考えています。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

デザイン思考入門

実践体感で学ぶイノベーション

プレゼンは納得できる? プロトタイプの説明については、完成されたプレゼンシートにて発表する方が納得感が得られると感じました。そのため、プロトタイプ作成や報告の優先事項は、スピード、実際に体感・体験できること、そして低コストであると考え、報告もこれらを重視しています。 体感をどう見直す? また、これらの優先事項を活かすためには、人間が直接体感・体験した感想を重要な情報として捉え、AIを活用して視覚化する方法が有効であると学びました。 データ収集の極意は? 業務におけるプロトタイプやテストは、図面やCGでの可視化に加え、実際に試作された空間として創出されています。これらに対して、顧客の反応を定性的なデータのみならず定量的なデータとしても捉え、比較できるようにすることが求められます。そのため、どのようなデータを収集し、何を提示するか、また提示することでどのような課題解決やニーズの充足につながるかを事前に検討する必要があります。 クライアントの声は? さらに、コミュニケーションの活性化を求めるクライアントに対しては、彼らが何を求めているのかを十分に確認しながら試作アイデアを実際の空間に反映させ、図面化します。そして、アンケートによる定性調査と、図面や空間に対するドット投票による定量調査の両軸で評価を行う取り組みが重要だと考えています。

データ・アナリティクス入門

仮説で磨く未来の仕事力

なぜ比較が必要? 分析の本質は比較にあるという考え方を、このコースを通じて実感しました。さまざまなデータを客観的に捉えることで、意味のある仮説を立て、問題解決に導くことができると学びました。 どの過程を重視? また、データ分析における問題解決のプロセスを、what、where、why、howといった各フェーズごとに練習できた点も印象的でした。それぞれのステップを意識することで、闇雲にデータを扱うのではなく、明確な方向性を持った意思決定がしやすいと感じました。 どうやって加工する? さらに、代表値の算出やグラフ化といった各種加工方法にも挑戦しました。多くの知見を得られたものの、引き続き練習を重ね、よりスムーズに扱えるようになりたいと考えています。 どう変わる職場? 職場においては、事業戦略の立案を担う立場であるため、事業計画や財務諸表といったデータを迅速に読み取り、上司やチームと共に議論できるようになることが目標です。その結果、仕事の幅が広がり、事業戦略に大きく貢献できると確信しています。 なぜ幅広い視点? そのためにも、さまざまなデータの切り口を洗い出し、仮説思考をさらに研ぎ澄ます必要があると感じました。業界に限定せず、幅広い知識や興味を持つことで、実践的なスキルが向上することを実感しています。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

仮説と視点が広げる学びの世界

なぜ率で比較? 比較を行う際、単に得られた数字だけに注目するのではなく、各母数の違いを考慮して率で比較することが重要だと感じました。 仮説はどう立てる? また、原因を特定するためには、仮説を立てる際に思考の範囲を広げることが必要です。フレームワークや対概念を活用し、問題を引き起こしている要素とそれ以外の要素に分けて検討することで、幅広い視点から仮説を考えることができると実感しました。 どの基準を選ぶ? さらに、複数の仮説から最適な案を選ぶためには、判断基準を明確に設定し、重みづけを行って評価するプロセスが不可欠です。何が原因でどの介入方法が効果的かを理解するため、何度もしっかりと比較する必要があると感じました。 実験の意義は何? 問題解決のアプローチとして、What/Where/Why/Howの順で検討を進める手法に加え、A/Bテストのように新しい介入方法の有効性を実験的に確認する方法も学びました。ただし、テストを実施する際には基準を統一し、条件をできる限り揃えることが求められます。 多視点は重要? 社員の健康課題のように問題が明確になりにくいケースでは、最初の段階から様々な視点で問題を考える必要があります。何度も複数の仮説を出し、判断基準を明確にすることで、最適な介入方法を選択していく大切さを改めて感じました。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

マーケティング入門

自分発見!学びと挑戦の記録

イノベーションで何が変わる? 商品の売れる・売れないを考える際に、イノベーションの普及要件というマーケティングフレームワークを学びました。このフレームワークは、比較優位、適合性、わかりやすさ、使用可能性、可視性の5つの視点で商品を分析するものです。ある成功事例から、わかりやすいキャッチコピーや効果的なネーミングが、実際の商品価値を届ける上で非常に重要であると実感しました。 競合の罠はどう防ぐ? また、競合ばかりに意識を向けすぎる差別化の罠にも注意する必要があると学びました。万人向けの商品展開に固執せず、市場を細分化し、ニーズを深掘りすることで、顧客の価値観に沿った商品の提供が実現できると考えています。 どう伝えれば響く? さらに、イベントのタイトルやキャッチコピー、内容を企画する際には、イノベーションの普及要件を意識し、ターゲットにしっかりと伝えたい価値や訴求点が届くよう工夫していきたいと感じました。特に、比較優位性や分かりやすさの点については、直近のイベントで課題を実感したばかりなので、検証を重ねながらより魅力的に伝わる方法を追求したいと思います。 改善策はどう見つかる? 施策ごとにこのフレームワークを振り返り、学んだ視点を活かしながら、ネット販売などにおいて売れていない原因を分析し、改善策を考察していくつもりです。

マーケティング入門

学びで切り拓く自分の未来

目的とターゲットは? マーケティングの定義は人それぞれ異なるため、初めに目的や手順を合わせておかないと、ゴールや進め方にズレが生じる恐れがあります。また、誰をターゲットにしているのか、市場がどこなのかを明確にすることが重要です。自分の主張を一方的に押し付けるのではなく、相手に魅力や良さが十分に伝わるよう努める必要があります。さまざまなバックグラウンドを持つ人々がいるため、売れているものが必ずしも誰もが知っているものとは限らないという点も留意すべき点です。 強みはどこにある? 自分が携わるサービスにおいては、ターゲットとなる顧客、強み、使用することで得られるメリットを、セールスとユーザー双方の視点から検討することが大切です。ユーザーアンケートなどを活用し、普段知ることのできない意見を収集するほか、競合サービスと比較して自社の強みや弱みを客観的に把握する必要があります。さらに、他のチームや部署のメンバーが感じているセールスポイントについて意見を交換し、より良いサービス提供に繋げていくことが求められます。 魅力は提案されていますか? 私の会社で扱う商品は、必ずしも生活に不可欠なものではありません。そのため、消費者に「欲しい」と思ってもらえるよう、どのような魅力や付加価値を提案できるか、引き続き模索していきたいと考えています。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

マーケティング入門

顧客目線でビジネスを再発見する

マーケティング思考とは? 「マーケティングそのもの」よりも「マーケティング思考」とも言える思考回路について改めて理解しました。具体的には「出発点を顧客目線に置く」ということです。ライブ授業では自己紹介を通じて単なる自己アピールではなく、「相手に魅力を感じてもらえる」という視点の重要性を学びました。急なお題であったため、相手目線を欠いた話になってしまったことを反省し、日頃から「相手は何を求めているか」を考える癖を身につけるべきだと感じました。 家業に顧客思考をどう活かす? 事後動画では、セールスと比較することで、思考の出発点が「顧客ニーズ」であり、成果は「顧客満足」で測るべきだということを教わりました。 会社業務(海外人事企画・運営)に適用するには、経営陣の立場に立った思考展開が必要だと感じます。私は会社の顧客を経営陣であると理解しています。家業(寺・観光)に対しては、まず「顧客は誰か」を深く考え、彼らが求めるものをさまざまな切り口から洗い出していきたいと思っています。 日々の顧客目線の重要性 日頃から顧客目線を意識することが重要です。自分が顧客である立場の場合でも、一度経営側の目線に立ってみてから改めて顧客目線に戻ってみると、新たな視点が見えてくるかもしれません。家業については、実際に洗い出しを行ってみたいと思います。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right