データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

戦略思考入門

ビジネス成功の鍵は現状把握とフレームワーク活用

他社との差別化に課題はある? 事業会社に携わっていた際、他社との差別化について意識していましたが、それがかなり主観的だったかもしれないと反省しています。「こうしたい」という思いと、実現可能なことや顧客から求められているもののギャップを埋めなければ、ビジネスとして成り立ちません。 フレームワークの活用で何が変わる? 各種のフレームワークは客観的な判断に有用ですが、顧客の設定(もしくは創造)がすべての軸となることが深く理解できました。3C、SWOT、バリューチェーン、VRIO分析を用いて、現実的かつ需要に適い、持続可能な差別化を打ち出すことに役立てていきたいと思います。 中古車販売で差別化するには? 中古車販売事業は競合も多く、とてもありふれた商売ですが、ポーターの3つの基本戦略が非常にわかりやすく当てはめられます。他社との比較が容易にでき、自社の差別化戦略に繋げられそうです。 フレームワークをどう実践する? 学んだフレームワークはとにかく使ってみなければスキルとして定着しないし、良し悪しの判断もできません。フレームワーク自体に良し悪しがあるわけではないでしょうが、合う合わないの問題はあるかと思います。 現状把握で安全なスタートを! どの方向へ向かうにしても、現在位置を正確に把握することで安全確実な一歩を踏み出せると考えます。まずは冷静な現状把握が必要です。

データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

データ・アナリティクス入門

論理と実践で掴む成長

どうして論理で考える? 問題解決にあたっては、「what」「where」「why」「how」という順序に沿い、論理的な流れを重視することが大切です。各段階で仮説を立て、安易な原因の特定や根拠のない解決策にならないよう意識しています。 仮説の深掘り大事? また、仮説設定や要素の分解の際は、必要に応じて3C(Customer/Competitor/Company)や4P(Product/Price/Place/Promotion)といった手法を用い、偏らない分析・比較を心がけています。これにより、より具体的で納得できる解決策を導き出すことが可能になります。 どうやって迅速判断? 日々の業務では、あらゆる意思決定が求められる中、根拠と基準を明確にし、迅速に判断するスキルが不可欠です。社内外で目にする数字やデータに違和感や異常を感じた際は、すぐに原因分析を行い、問題解決に向けた対策に着手することが求められています。特に、決算報告や業績予想の資料作成、報告時には、正確な原因把握と的確な対策が必要となります。 資格取得どう進む? そのため、改めて決算書の読み方や作成方法を学ぶ必要性を感じています。既に購入している教科書や問題集に着手し、日商簿記の資格取得を目標に、継続的に学習を進めています。帰任後すぐに資格を取得するという目標を掲げ、計画的に勉強を進めていく予定です。

クリティカルシンキング入門

問題解決の視点を変える新しいアプローチ

問題分析の新たな視点は? 問題を分析する際、私は分解して考えることが重要であると認識していました。しかし、まず全体をしっかり定義した上で、MECE(漏れなくダブりなく)を意識した分解方法を考慮することの重要性を理解しました。さらに、その切り口が適切であるかどうかを見直し、別の視点からアプローチすることの必要性も理解しました。 プロジェクトの収益化戦略とは? 担当部門の売上や利益を拡大する際には、プロジェクト別に社員一人当たりの売上や利益、平均単価を算出し、それぞれのプロジェクトを比較することで問題のあるプロジェクトを特定します。その上で、効率的な単価の引き上げや、社員とビジネスパートナーの入れ替え、もしくはプロジェクト継続を諦めてより収益性の高いプロジェクトにリソースを振り分けるという対策を導き出すことが可能になります。 部門の売上拡大にどう貢献する? 社員一人当たりの売上を向上させるために、社員とビジネスパートナーの入れ替えや単価アップの交渉の推進が有効です。ただし、業務知識を有する社員の配置換えは現場への負担も大きいため、十分に検討した上で実施することが求められます。また、社員のローテーションを可能にすることで、プロジェクトを離れる社員には新たなプロジェクトを担当させ、その際もビジネスパートナーを活用することで、部門全体の売上拡大につながると考えます。

アカウンティング入門

経営理念とPLを連動させる実例学習の魅力

アキコのカフェで学んだこととは? アキコのカフェ事例を通して、PLを活用してビジネスモデルや経営理念を浮き彫りにする方法を学びました。理念を維持しながら利益を上げることが重要であり、アキコのカフェの場合、手軽さや日常感がコンセプトです。そのため、値上げではなく、仕入れの原価調整や多くのお客様に来店してもらうための施策、回転率の向上などの手段が必要です。 PLを面白く学ぶには? これまでPLは無味乾燥な数字の羅列に思えましたが、学習を通じて「難しくなくて」「面白くて」を実感できるようになりました。 自社分析で何を考慮する? 自社の分析においては、経営理念に沿ったお金の使い方をしているかを検討し、今後の資金使用にも活用できることを確認しました。業界的には属人化しやすい面がありますが、社員を大切にすることがPLにも反映されているかを見極め、それをさらに他社との差別化のために投資していきたいと考えています。 学習時間をどう確保する? まずは定期的な学習時間の確保が必要です。平日は業務に追われることが多いので、週末の朝に学習時間を設ける習慣を作ることが重要です。それができたら平日にも学習時間を拡大します。具体的には、PLの分析とインプットを行います。同業他社や近隣業種のPLの分析、さらに優秀とされる企業のPLを比較し、経験値を増やして苦手意識を払拭していきます。

データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

マーケティング入門

顧客視点で切り拓く独自価値の道

普及要件ってどう? イノベーションの普及要件として、比較優位、適合性、わかりやすさ、試用可能性、可視性が重要であると学びました。ある成功事例では、家庭での利用に適した製品特性や、明確なコンセプト、そして技術やマーケティング施策の可視性が評価されていると感じました。また、売れるためには顧客心理の理解が不可欠で、競合に左右されずに独自の価値を追求することが大切であるという点も印象的でした。 価値観は整えられて? 現在の業務に照らすと、新たに携わっているプロダクトでも、世界観や価値観の適合性、コンセプトの明瞭さ、さらには技術や物性の可視性をより一層明確にする必要性を感じています。新商品を考える際、ついマスマーケティングに偏りがちですが、顧客のニーズを丁寧に探り、特定の市場で認められる価値を創出する戦略が成功への鍵であると実感しました。 ブランドの魅力は? 新規性のある商品の開発においては、ブランディングや提供すべき情緒的価値を持つ類似製品について、顧客視点で売れる理由やその対策を考えることが求められます。今後は、インタビューを通して顧客のインサイトを深く掘り下げ、顧客ニーズと乖離しないブランディングを実現することを目指します。また、現行プロダクトにおいても、イノベーションの普及要件を整理し、何を強調しどのように魅せるかを検討していきたいと考えています。

データ・アナリティクス入門

復活!フレームワークで変わる仮説力

3Cや4Pの知識はどう? 3Cや4Pの考え方については、以前どこかで聞いた記憶があったものの、すっかり忘れていたため、改めて学習することができた点が良かったと感じています。 仮説設定に課題は? もともと、ゼロから自分で仮説を立てることが苦手で、仮説を作る際の効率が悪く、精度も不足していました。しかし、フレームワークを活用することで、要点を整理しやすくなり、情報の捉え方が明確になったと実感しています。また、仮説を構築する際には、以前学んだMECEの考え方が非常に役立つことも再認識しました。 クロージングの秘訣は? 内定者へのクロージングの際には、他社との差別化や意向を高めるために仮説を立て、対策を組み立てる必要があります。現在持っている情報から、何を伝えれば意向が上がるのか、また、さらに追加でどんなヒアリングが必要かを仮説を通して見極めながら情報収集を行っています。 比較分析はどんな感じ? また、内定者向けのクロージングに際して、自社と競合他社を比較するための型、例えば比較表のようなツールがあると、仮説立案がよりスムーズになると感じています。転職時に比較される要素を3Cや4Pのような形で整理し、どの部分で自社が優位に立っているか、逆に他社が優位または情報不足となっているかが一目で分かれば、クロージングのための具体的な対策を立てやすくなるでしょう。

デザイン思考入門

ユーザー視点で描く未来

デザイン思考はどう? 初回の授業を受けて、デザイン思考に対する自分の理解がまだ浅く、視点の解像度も低いことを実感しました。グループディスカッションでは、マーケティング(特にマーケットイン)のアプローチとの違いについて意見が飛び交い、私自身もその違いがはっきりと捉えられていない印象を受けました。人間中心の考え方や共感の概念についても、マーケティングと比較すると特有のものか疑問が残りました。プロトタイピングによる試行錯誤のプロセスが、単にそれだけの違いなのか、他に意義があるのかと考えると、もやもやした気持ちが募るばかりです。 学びの解像度はどう? 今後の6週間で、どこまでこの解像度を高められるかに注目しながら、学びを積み重ねていきたいと思います。現時点では具体的なイメージはまだ固まっていませんが、まずはユーザー中心の視点で物事を考えることを意識していく所存です。サービスを生み出す立場として、ユーザーが本当に必要としているものや、ユーザー像を理解する努力が必要だと痛感しました。提供者側のエゴに陥らないよう、常にユーザーの視点を大事にしていきたいです。 顧客調査は何故? また、顧客を深く理解するためには、まず徹底した調査から始めるのが自然であり、納得のいくアプローチだと感じました。この考え方を、今後の全ての業務においてしっかりと実践していくつもりです。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right