データ・アナリティクス入門

データ活用の第一歩:仮説と比較軸の重要性

データ活用の目的設定はどうする? データ分析やデータ活用というキーワードは頻繁に耳にしますが、私はこれを「存在するデータを何か有効活用する方法」と考えていました。しかし、この考えではまず目的が定まっておらず、仮説もないため、何を軸にして比較するかができません。まずは仮説や比較軸を含めた目的をはっきりとさせてから取り組む必要があります。 自社内営業改善の具体戦略 私が考えたデータ活用の具体例としては、自社内の営業活動の改善と担当顧客へのアプローチの2点があります。 顧客アプローチにどう活かす? 自社内では、自身のチームの営業マネジメント改善にデータを活用します。具体的には、YoY(前年比)分析や受注傾向分析(品目、打率)を行います。 ヒアリングと提案骨子の重要性 一方、担当顧客向けには、データ分析に関する案件のヒアリングおよび提案骨子の作成を行います。この際、顧客が持つ仮説と比較軸のヒアリングを行い、それが具体的でない場合には顧客に提言を行います。仮説や軸が定まっている際には、それを提案骨子に落とし込み、定まっていない場合は定めるためのアプローチを検討します。 データ活用の第一歩は? このように、目的を明確にし、比較軸や仮説を定めることがデータ活用の第一歩であると実感しました。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

クリティカルシンキング入門

逆算で切り拓く新しい視点

切り口はどう考える? 学習を通して、分解の切り口として層別分解、変数分解、プロセス分解という多角的なアプローチを学びました。これまでは無意識のうちに層別分解を利用することが多かったものの、特に「When/Who/How」という視点を取り入れることで、さらに選択肢が広がり、得たい結果から逆算して適切な切り口を選ぶ重要性を改めて実感しました。 人事分析の視点は? また、人事領域で従業員データを分析する際にも、学んだ考え方が幅広く応用できることを感じました。入社者・退職者の動向や部署ごとの人数推移の分析において、年齢層、入社区分、性別、入社年度、居住地エリアなど「When/Who/How」の各視点でデータを整理することで、より具体的な傾向が見えてくると考えています。さらに、情報を収集する際には、過去の履歴の蓄積がいかに重要かを再認識し、全社的な情報収集の体制の見直しが必要だという点も学びました。 退職率の焦点は? 加えて、近年増加傾向にある退職者についても、特に若年層の離職率の高さという課題に着目し、年代別のデータ比較や、離職率が高いとされる入社3年目までという特定期間を切り口に、多角的な分析を実施していく方針です。これにより、より精緻な人事戦略の立案に役立てていきたいと考えています。

マーケティング入門

商品は見せ方で生まれ変わる

ネーミングが成功するの? 新商品の普及に影響を与える要素として、比較優位、適合性、試用可能性、可視性の4つが基盤となることを学びました。しかし、これらの要素が整っていても、商品のネーミングやイメージが売れるかどうかに大きく影響するという事実を改めて認識しました。 コピーは伝わるの? 魅力的なコピーや名称は、商品の良さを的確に伝える上で非常に重要です。どれほど中身を充実させても、顧客にその魅力が伝わらなければ意味がないことを実感しました。 パッケージの効果は? また、売れる商品づくりは中身の向上に注力するだけでは不十分であり、ネーミングやパッケージデザインの工夫が売上を大きく左右する点も印象深かったです。中身のブラッシュアップに加え、これらの外面的な表現方法にも十分な時間と労力をかける必要があると感じています。 顧客理解は難しい? さらに、顧客心理を理解する重要性についてはこれまでの学習で十分に認識していたものの、実際に実践するとなると非常に難しいという現実に直面しました。膨大な費用をかけて何度も調査を実施できるわけではないため、普段からSNSの動向を丁寧に追い、ヒット商品の背景にある理由を考察する習慣を身につけることで、より顧客に寄り添った商品開発を実現したいと考えています。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

データ・アナリティクス入門

比較と目的で開く新発見

何を比較すべき? 分析について学んだことは大きく3点あります。まず、分析は何かと何かを比較することで初めて意味を持つという点です。単に数値を並べるだけではなく、比較対象を明確にすることで発見が生まれます。 目的は何か? 次に、分析には明確な目的が必要であるということです。目的がはっきりしていなければ、どの数値を見て何を判断すべきか分からず、結果として行き当たりばったりな分析になってしまいます。 チーム連携はどう? そして、チーム内でのコミュニケーションの重要性です。分析に取り組む際は、目的や比較する基準についてメンバー全員で認識を合わせることが不可欠であると実感しました。 業務の実態は? 私の担当業務は中小企業向けのインサイドセールスの運営です。日々、コール数、コール時間、商談化数、受注数といった指標の管理に努めるとともに、受注商材の傾向やメール配信からの顧客獲得状況なども活用しています。これらのデータを比較する際には、まず各項目の条件が揃っているか、そもそもの目的は何かを確認することを常に意識しています。 成果向上のヒントは? 今後は目的や比較基準の確認を徹底し、チーム全体で正しい分析の考え方を共有して、より成果が出る体制を築いていきたいと考えています。

アカウンティング入門

数字で読み解く戦略のヒント

損益計算書はどうなってる? 損益計算書(P/L)は、企業の収益、費用、利益を示す成績表です。より細かく見ると、5つの利益段階に分けられます。まず、売上高から製造にかかる費用である売上原価を差し引いた売上純利益。その後、売上純利益から販売や宣伝に必要な販管費を引いた営業利益となります。さらに、営業利益に営業外収入を加え、営業外費用を差し引いた経常利益、これに一時的な要因である特別利益や特別損失を反映した税金前当利益、そして最終的に計算される当期純利益という流れです。 戦略判断はどう進む? 現在、戦略立案にあたっては、感覚や周囲から得た情報、または上からの指示で動いている部分が大きいです。しかし、損益計算書を自ら読み解くことで、戦略の正当性や妥当性について客観的な判断ができるようになりたいと考えています。 今週の分析はどう? まず、今週の前半は自社の損益計算書を丹念に分析し、感覚や他社情報に頼らない正確な状況把握に努めます。次に、今週後半では直近3年分の損益計算書を見直し、会社の業績推移を理解する予定です。そして、週末には同業他社の中でトップクラスの企業と、売上規模がほぼ同等の企業2社の損益計算書を比較し、自社の成績状況を業界内でどの位置にあるのか把握したいと思います。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right