クリティカルシンキング入門

思考の3つの視で視野を広げる旅

本当に正しいのか? クリティカルシンキングは、自分自身を対象とする重要なスキルです。出したアウトプットに対して、「本当にこれで正しいのか?」という視点を常に持つことが求められます。これには、思考の偏りをなくすために、視点、視座、視野という3つの視を意識することが大切です。病院のワークを通じて様々な視点を意識することができた一方で、視座や視野を広げることには至っておらず、特にこれらの意識を持つ必要があります。 具体と抽象の境目は? 具体と抽象の行き来も重要です。私自身、比較的具体的な事象に目を向ける傾向がありますが、ある程度具体で考えた後に抽象化するなど、行き来することを心がけています。このプロセスを支えるために、フレームワークの活用が非常に役立ちます。 企画はどう伝える? これらのスキルは、企画の前段階での問題特定の場面や、自分自身の企画立案の場面で特に有効です。また、上司への提案時や日常のコミュニケーションにおいても、これらの視点を活用しています。さらに、部下のアウトプットに対する意見を述べるときや研修講師として対面で質問を受ける場面でも非常に役立っています。 なぜ問い続けるの? 特に企画の初期段階では、フレームワークと3つの視を活用することで、自分の思考の偏りから脱することができます。また、自分の出したアウトプットに対して、「本当にそうなのか?」「要するにどういうことか?」「なぜそれが言えるのか?」という視点を持つことが極めて重要です。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

データ・アナリティクス入門

目的明確!小さな成功体験から学ぶ

分析はどう進める? 分析を始める際は、まず何をどのように比較するかを明確にし、普遍的かつ偏りのない俯瞰的な視点で対象を捉えることが大切です。その上で、最初に目的をしっかり設定し、仮説の構築を行うことが必要です。実際、どの手法を用いるかよりも、まず「何」を重視し、体系的に物事を整理していくことが大切だと実感しました。 目的は明確か? また、何をしたいのか、なぜそれをしたいのかという目的を明確にすることに十分な時間をかけるべきです。出発点のズレはプロセスが進むにつれて大きくなり、取り返しがつかなくなる可能性があるためです。これまで、単にデータを作成するだけで有用な仮説がなかったために、データが十分に活かせず埋もれていた傾向があると感じています。 成功体験は大事? 既に取り組んできた方法もありますが、完全には浸透していない部分もあると実感しています。そこで、今後は継続的に小さな成功体験を積み重ねることが重要だと考えています。 具体手順は? 具体的には、以下の手順を意識しています。 ・まず、複数の視点からデータを検証し、それぞれの状態を正確に把握する。 ・何と比較するか、またプロジェクトを進めるためにどのデータを比較対象とするかを明確に決定し、一度決めた基準は後で変更しない。 ・進捗の状況を見ながら、行動の軌道修正が必要か否かを判断できる体制を整える。 ・結果が出た際には、なぜそのような結果になったのか振り返り、データ上で整理しておく。

アカウンティング入門

数字で切り拓く経営の未来

利益の種類は何? 利益には大きく分けて、営業利益、経常利益、当期純利益の3種類があり、売上総利益も押さえておくとよいという点は基本中の基本です。 P/Lの全体像は? P/L(損益計算書)を読むときは、大きな数字―売上高、営業利益、経常利益、当期純利益―を軸にして、全体の概況を掴むことがポイントです。また、分析は比較や対比を行うことで、傾向の変化や相違点を見つけ出す方法が有効です。 異なるP/Lの違いは? さらに、異なるP/Lを比較することで、その構造の違いを確認できます。例えば、業種によっては収益向上の度合いが大きく異なり、業界ごとの特徴が浮き彫りになることもあります。 事業計画の評価は? 事業計画においては、企業コンセプトに沿った施策が展開されているか、投入費用が適正かを総合的に判断する必要があります。効果を上げるためには、アウトプットを増やすか費用を削減するどちらかを選ぶかといった視点も大切です。同業他社のP/Lと比較・対比することで、傾向の相違点を見つけ、新たなアイデアや施策を模索する取り組みも求められます。 皆様の意見は? なお、今回の設問2「原価比率の高い理由」では、個人的な思い込みから適正とは言えない回答をしてしまいました。そこで、皆様はどのように回答されたのか、また、直接利益に結びつかない仕事の性質上、この講習内容をどのように自身の業務に定着させていこうと考えているのか、ぜひ意見交換できればと思います。

アカウンティング入門

数字で読み解く経営のヒント

コスト削減の真意は? 単純にコストを削減すればよいというわけではなく、各社においてどの項目を増やすべきか、削減すべきかという違いがあることが分かります。 指標の意味はどう? 各種指標にはさまざまな観点があります。売上総利益については、単に売上高や原材料費が前年と比べて増減しているかに着目すればよいでしょう。一方、営業利益の場合は、販売費や一般管理費が売上総利益に対してどの程度の割合を占め、前年と比べて増加しているか減少しているかを確認する必要があります。さらに、経常利益の割合が高い会社は、本業での収益が薄い可能性があるという点も注目すべきです。 経営戦略はどう考える? また、自社の経営の方向性について常に自分なりに答えられるようになることが重要です。今後どの活動に資金を投入すべきかを具体的に示すことで、社内外に経営戦略を説明し、実行へと繋げることができます。さらに、昨年との違いを踏まえ、今後どこに注力すべきかを明確に説明できるようになること、そして自社および競合他社の財務諸表をじっくりと比較検討することが求められます。 費用配分はどう検討? 最後に、次のような疑問が浮かびます。研究開発費は一般管理費に含めるべきか、また、業種ごとに営業利益や経常利益の相場はどの程度異なるのか。当期純利益は株主にどの程度残るのが理想であり、その一部は従業員にどのように還元されるべきか。さらに、ROEやROIは損益計算書上のどの項目に対応するのか、といった点です。

アカウンティング入門

受講生が紐解く会社の資金物語

B/Sの基本はどう捉える? B/S、つまりバランスシートは、資産の部に対して負債の部と純資産の部がどのようにバランスしているかを示す指標です。しかし、企業ごとにどのくらいの資金や資産があるか、そしてそれをどのように調達しているかは大きく異なります。たとえば、銀行などからの借入で資金調達する場合、その負債は負債の部に計上されます。一方、株主からの出資という形で調達されれば、純資産の部に含まれます。さらに、純資産の内訳である資本金と利益剰余金(当期純利益と過年度の累積)の比率を分析することも興味深いと感じました。負債が少なく純資産が多い場合でも、必ずしも事業が順調で利益を出しているとは限らず、株主からの出資によって賄われている場合もあるのかもしれません。 子会社比較で何が見える? また、数年以内に設立され、同じ事業を行う子会社同士を比較することで、現金やその他の資産がどこから調達されているのかを明確にすることができます。国によっては、海外の投資規制により最低資本金額が定められているところもあれば、そうした制約がない場合もあり、この違いにも注意が必要です。さらに、事業運営において、売上(B/Sでいう売掛金)から適切に資金を調達し、費用に充てられているのか、あるいは導入期で資本金に頼らざるを得ない状況なのかを分析することが求められます。どの程度の売上収益が確保できれば、事業運営を維持しながら新たな投資へと資金を回せるのかを検討することも重要だと感じました。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

アカウンティング入門

営業戦略の裏側を徹底解析!P/Lで見る必勝法

なぜP/Lを理解する必要があるのか? ビジネスのコンセプトやビジネスモデルを理解した上でP/Lを読むことが重要です。ビジネスモデルが分からないままP/Lだけを見ても、数字の示す意味が理解できなくなります。ビジネスモデルが分かると、数字、特に費用の内訳が想定しやすくなります。特にマーケティング費用は時折忘れがちになるので注意が必要です。これは、エンジニア出身者の弱点としてより意識して取り組むべき点です。 ビジネスモデルごとのP/L比較 現在、部門内のいくつかのプロジェクトのビジネスケースを見直す時期です。各プロジェクトのP/Lを確認し、特にサービス、ハードウェア+サービス、ハードウェアBtBなどのビジネスモデルごとにP/Lを比較しています。これにより、各プロジェクトの個別のP/Lが確認できる状態になり、横並びで比較することで違いが見え始めています。 効果的なP/L確認の方法とは? まずは、各プロジェクトから提出されるP/Lを来週1日1件ずつ確認していきます。確認すべきプロジェクト数は5つあり、1日1件確認する予定です。分からない項目については、各プロジェクトチームに確認して理解を深めることが重要です。一件ずつ質問を通じて理解を深めていくつもりです。 来週の目標とアクション宣言 グループワーク後の宣言として、米国時間の木曜日までにGlobisの課題を終わらせる予定です。また、プロジェクトのP/Lを見ての気付きも発表する予定です。

データ・アナリティクス入門

深く考える力を鍛える学びの旅

分析と言語化の重要性を再認識 これまで何となく行ってきた分析や可視化について、言語化や資料化がされてきました。しかし、改めて自分の言葉で説明しきれなかったのは、物事を一つひとつ深く考えることができていなかったからだと感じています。 目的を明確にすることが鍵 学びを忘れずに復習をし、アウトプットを続けていくためには、目的を明確にすることが重要です。そして、情報を分け、比較し、言語化することも大切です。曖昧に「分析してほしい」といった指示を出してしまうことも多く、その理由は頭の中にイメージがあるものの、それを伝えきらずに「分かるだろう」「伝わっているだろう」と甘えてしまっているからだと気づきました。 明確な指示のための工夫は? さらに、目的やアウトプットが曖昧なまま思考を止めてしまうため、指示もあやふやになることに気付きました。依頼時には、目的、アウトプットのイメージ、期限、制約などをしっかり伝えることが必要です。 頭の中のイメージを形にする そのためには、まず自分の考えを言語化し、やるべきことが合っているのかや、伝えられた側が動けるのかをイメージすることが大切です。これにより自身としては、アウトプットを最低でも2回行うことになります。これまでより時間がかかるかもしれませんが、きちんと行い、それを繰り返すことで、早いアウトプットができるように訓練を積む計画です。この計画と想いを忘れないことが必要です。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。
AIコーチング導線バナー

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right