データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

アカウンティング入門

数字で読み解く成長の軌跡

提供価値は何? Week2に引き続き、提供価値とコンセプトに基づいて考える重要性を改めて実感しました。PLを確認する際は、売上高、営業利益、経常利益、当期純利益といった大きな数字で全体像を把握し、比較や対比を通じて傾向の変化や違いを見極めることが大切だと学びました。 経常利益の意味は? また、これまでは当期純利益に注目していましたが、投資家の視点では毎年の稼ぐ力を示す経常利益に注目するケースが多いと知り、新しい視点を得ることができました。さらに、BSで企業の体力を見るだけでなく、通常の収益と費用が分かる経常利益を通じて、継続して稼ぐ力があるかどうかを判断することの意義を感じました。 企画収益はどうなる? 新規事業や企画の立案時には、まずその企画の提供価値を明確にし、コンセプトに基づいてどのように収益を上げるか、売上高や営業利益、経常利益がどのように変動するかを論理的に考える習慣を身につけたいと思います。当期純利益に固執せず、売上高、営業利益、経常利益のバランスが競合他社と大きく乖離していないかどうかも、検証の観点に加えていきます。 異業種のPLは何を示す? そのため、提供価値とコンセプトに立ち返る思考法を定着させるために、同業種だけでなく異業種のPLを定期的にチェックする習慣をつけたいと考えています。今回のカフェ事例のように、身近でイメージしやすい業界のPLから分析を始めることで、理解を深めていこうと思います。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

クリティカルシンキング入門

学びを深めるための日本語の指南

正しい文章はどう作る? 日本語を正しく使うためには、書籍を読むことで文章に触れる機会を増やす必要があると感じました。元の文章に影響されて主語と述語が混乱することがあるので、まず何を言いたいのかを明確にし、その上で日本語が正しいかどうかを確認しながら文章を組み立てることが重要だと考えています。 説得の秘訣は何? 伝える上で、説得する相手が何を求めているのかを考慮し、それに基づいて行動していきたいです。説得に必要な要素を多角的に考え、整理する能力を持ちたいと思います。研究が必要な部分がある場合、それも含めて多方面から案を出し、検討することが重要だと感じました。 なぜ文章を確認? 日本語の正確さを求めるため、ブランディング業務としてプレスリリースやSNS、チラシなどの文章を確認しています。 ピラミッドの効果は? ピラミッドストラクチャーは説得や施策検討のほぼすべてのシーンで活用できると考えています。最近の業務では、CM効果の検証やアンケート制作において、この手法を活用したいと考えています。 伝わる文章の秘訣は? 主語と述語を意識し、言いたいことが明確に伝わるように心がけます。また、相手の説得ポイントを意識し、それを軸に伝えることを今後意識していきます。施策検討などで自分の考えをまとめる際には、要素を包括的に分解し、前回学んだMECEを用いてダブりや漏れがないか確認することを心掛けます。

データ・アナリティクス入門

MECEで見つけた問題解決の新たな視点

問題解決の4ステップとは? 普段、何気なく課題を立てる際にwhat、where、why、howを使ってタスクを起こしていましたが、これが問題解決における4ステップであることを今知りました。そのため、4つを順に行わず、whatとhowばかり考えてタスクに起こしていたことが間違いだったと気づきました。 効果的なMECEの活用法は? MECEを活用してロジカルツリーの作成、ロジカルに課題解決を実践することで、少人数のチームでも短時間で効果を上げるサイクルを構築していきたいと思います。今後はプロセスを踏み、自社サービスの課題解決に向けて努力していきたいです。 どのようにMECEを実践する? MECEの概念についてはなんとなく知っていたものの、それを実践できていなかったと感じています。早速活用したいと思います。特にSEOコラムのオーガニックを増加させるために、MECEで分類してから細かく分析したことがないので、試してみたいと感じました。他の分類においても、影響力が少なくてもどこまで細かく分類すべきかを考えるのは難しいと感じます。 タスクの明確化はどう進める? まずは、自身のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録の増加(且つ正しいキーワードと属性のユーザー獲得)を最短でどこからできるのかを検討します。その後にスケジュールを立ててチームに共有したいと思います。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

アカウンティング入門

顧客を読み解く会計の視点

エンタメ価値はどこ? オリエンタルランドのケーススタディを通じて、エンターテインメント企業ならではの事業内容や顧客への提供価値を踏まえた資産の保有方法、経費の計上方法について学びました。特に、キャストの人件費が売上原価に含まれている点が非常に興味深かったです。 会計をどう理解? 初回授業で「アカウンティングはわかりやすく説明するためのもの」と学んだ経験がありますが、会計数値を読み解くにはまず顧客への提供価値に目を向け、その後「活動・資源・資金」といった観点から情報をブレイクダウンすることで、企業が伝えたい意図を正しく理解できると実感しました。 新企画のヒントは? 次年度の企画立案の際には、Week6と同様に競合以外の異業種のPLやBSを参考にすることで、新たなビジネスモデルの発想の可能性を感じています。既存のビジネスモデルにとらわれず、自社に生かせるアイデアや収益性の高い仕組みを創出したいと考えています。 情報共有で進化する? また、決算発表資料などを参考に他社の会計情報を積極的に確認し、競合以外の異業種のPLやBSに目を通すことも今後の取り組みの一つです。さらに、社内の若手メンバーを中心に財務諸表3種の違いについて情報を共有する場を設け、グループごとに異業種の事例を検討しながらブレインストーミングを行うことで、新しいビジネスモデルの種を探していく予定です。

クリティカルシンキング入門

イシューで磨く本質の力

イシューの本質は? 「イシューとは何か、そしてイシューを設定して考えるとはどういうことか」を学びました。例えば、ファストフードチェーンの事例では、売上増という大きな目標に向かって進む前に、まず情報を細かく分解し、本当に解決すべき問い(イシュー)は何かを探るプロセスが大切だと説明されていました。売上増そのものがイシューではなく、目標達成の障壁となる要因や課題を見極めることが、本質であると理解しました。これにより、これまで「売上に対して何をやるべきか」という問いを立てていた自分の方法にブレがあったことに気付き、今後は目標への障壁となる具体的な課題に着目して情報を整理しようと考えています。 イベント数字は何示す? また、コラボイベントの売上やSNS運用のデータ集計から、次の施策へ向けた具体的なアクションを導き出す際にも、この視点が役立つと感じています。たとえば、3か月間実施したイベントの数字の推移を加工・整理し、目標売上に対して実績がどの程度であったか、また達成のためにはどのような条件が必要かを検討することで、課題(イシュー)を明確にする予定です。 イシューの適否は? さらに、目標と解決すべきイシューが混同しやすいため、ピラミッドストラクチャーを活用して「そのイシューは本当に適切か」を客観的に確認し、より的確な仮説にたどり着けるよう進めていきます。

データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

クリティカルシンキング入門

ナノ単科で見つけた本当の学び

本当のイシューは? 現実に直面するさまざまな事象に対して、何が本当のイシューなのかを常に意識することが重要です。事実やデータに基づいた分析を経て、まずは冷静になり、すぐに安易な手法に飛び付くのではなく、マクロとミクロの両面から視座を高く保って俯瞰することが求められます。これにより、実現したい「ありたき姿」を達成するために足枷となっているボトルネックを見出し、それを明確にして対処することで、本質的な課題解決に繋げられると考えています。 根本原因は何? また、現場で発生する多様な事象に向き合う際には、その背後にある根本原因を追究することが不可欠です。冷静な判断をもとに何が原因となっているのか、なぜそのような結果に至ったのかを繰り返し問うことで、問題の本質に辿り着く思考方法が形成されます。安易な打ち手に飛び付くのではなく、視座を高く保ち、一歩引いて現状を分析する姿勢が、課題解決の大きな鍵となります。 伝え方はどうすべき? さらに、企画提案資料やエビデンスの提示においても、このアプローチは非常に有効です。例えば、ピラミッドストラクチャーなどのフレームワークを用いることで、聞き手にとって分かりやすい構成や表現が実現でき、事実データの適切な見せ方にも工夫を凝らすことが可能となります。こうした工夫により、無駄な手戻りを防ぎ、効果的な業務推進へとつなげることが期待できます。

デザイン思考入門

デザイン思考と共感で創造力を育む

デザイン思考で効果的に話し合うには? 「新しいまな板をデザインする」というテーマの下で、グループと共に作業工程を話し合いました。私はデザイン思考のステップを把握しているつもりでしたが、一部が抜けてしまい、ディスカッション中に効果的な発言ができず、グループの意見をまとめることも困難でした。その後、先生の指導を受けてデザイン思考のプロセスを再確認し、協働と共感が重要である各ステップについて再学習しました。また、「万人向けのものは誰にも刺さらない」という言葉から、現在のパーソナライズ化の進展を学び、デザイン思考の重要性を改めて実感しました。 パーソナライズ化はどのように実現する? 私はヒューリスティック評価やユーザー調査を担当する際、課題を見つけることはできても、改善案を提案する際に万人向けのアイデアばかりが浮かんでいました。これを改善するために、「協働」と「共感」を意識しつつ、パーソナライズ化することを心がけ、万人向けに留まらない提案を目指したいと考えています。 ターゲット層を明確にする理由は? 過去にはヒューリスティック評価やユーザー調査を行う際に、「パーソナライズ化」を十分に意識していないことに気づきました。今後は、ターゲット層を明確にしたうえで、改善と提供するべき内容を考慮し、パーソナライズされたサービスの改善提案ができるよう、意識を変えていきたいと思います。

職種が「クリエイティブ(デザイナー・プロデューサー・クリエイターなど)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right