データ・アナリティクス入門

問題解決のプロセスを活かす学び

問題解決のプロセスとは? 問題解決には明確なプロセスがあります。具体的には、What、Where、Why、Howの6つのステップがあり、この順番を守ることが重要です。まずは、なりたい姿と現状のギャップを把握することが分析の第一歩です。そして、解決方法を考える前に、現状で起きている問題の状況や原因を見つけることに時間をかける必要があります。 自分の思考の癖をどう活かす? 私の場合、すぐに解決方法(How)に飛びがちです。しかし、自分の考え方の癖を知ることも問題解決において重要です。オープンデータから社会課題を洗い出すのが現在の業務ですが、仮説に対して問題を絞り込む際にロジックツリーが役立ちます。基本的にはチームで取り組むため、思考のプロセスを視覚化・言語化することで、情報共有を齟齬なく行えるようにしています。 データ分析で何を学びたい? データ分析を体系的に学ぶことで、ロジカルに再現性のあるデータ分析に取り組みたいと思っています。特に、ロジックツリーを作る際には「手書き」を心がけたいと思います。紙に書くことで思考が整理され、重要事項には丸をつけたり矢印を使ったりすることで、優先順位を決めるのに役立ちます。

クリティカルシンキング入門

問いを共有し、成功への最短距離へ

問いの意味は何? 「問いから始める、問いを残す、問いを共有する」ことの重要性を再認識しました。特に「問いを共有する」ことは、丁寧さが重要だと感じています。複数の人と業務を進める中で、たとえ正しい問いを見つけても、周囲が同じ問いを共有していなければ、議論が散乱してしまいます。そのため、問いを見つけた後は、相手にしっかり伝えることを意識したいと思います。 どんな局面で役立つ? 業務を遂行する上では、このアプローチはどの場面でも活用できると考えています。具体的には、準備段階からミーティング、最終提案のフェーズに至るまで、常に意識したいです。その際に重要だと感じる観点は以下の通りです。まず、的確に課題を把握すること。次に、解決策の要素を多面的に検討すること。そして、視覚化して効果的に伝えること。また、相手の視座を持ち、関係者を納得させることが重要です。 どうすれば成功する? これらのステップを繰り返し行うことを意識します。まず、グラフ制作のようにトライすることから始めると、多くの発見があります。上記のステップを反復して実行し、所要時間を短縮することで、最短距離で成功を目指したいと思います。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

問題解決に役立つ分析ステップの探求

問題解決に必要なステップとは? 「What, Where, Why, How」のステップを意識することで、さまざまなことに安易に飛びつくことなく、順序立てて問題を解き明かせると感じました。問題の中で、利益を上げるために何をすべきかという設問に対しては、各項目の利益の占有率を金額で換算し、数字を比較することでインパクトの大きい箇所を見つけ出しました。まさに「分析は比較なり」と実感しました。 ギャップをどう示すか? 問題解決のプロセスとして、あるべき姿と現実を明確にし、そのギャップを数字で示します。収益構造を変数のロジックツリーに当てはめ、それぞれの変数ごとに金額換算して比較することで、インパクトの大きい部分を特定します。 効果的な分析の手順 具体的なステップとしては、まず目的を明確にすることから始めます。次にロジックツリーを作成し、変数分解と層別分解を行います。特に、ロジックツリーを2種類作る際は、その目的を明確にすることで手段が目的化しないように注意します。意味のある分析の切り口を意識することが重要だと考えています。それを達成するためにも、目的の明確化が大切であると感じました。

クリティカルシンキング入門

読み手を引き込む文章と図の極意

視線導線はどう整理? 今回の学習を通じて、ふたつの点が特に印象に残りました。まず、文章の流れと図の配置の順序をそろえることで、視線導線が整理され、文章もスライドもスムーズに理解できるようになるという発見です。この工夫により、読み手が情報へ効率的にアクセスできる点がとても魅力的だと感じました。 目的は明確になった? 次に、よい文章とは「目的が明確」であり、「読み手」をしっかり意識して作成されるものであると再認識しました。タイトルや中見出しが効果的に配置されることで、読み手が文章の目的を瞬時に把握し、必要な情報にすぐにたどり着ける点が重要だと感じました。 どう伝え方を見直す? これらの気付きは、デザイン提案資料の作成にすぐに活かせると考えています。文章の流れと図の配置を工夫し、視線導線を意識することで、より効果的なレイアウトを実現できます。また、資料作成時は「何を」「誰に」伝えたいのかを常に念頭に置くことが大切です。以前はレビュープロセスの中で目的がブレることがありましたが、資料やメモに目的や想定読者を明記することで、一貫性のある内容に仕上げられると感じました。

データ・アナリティクス入門

比較で解き明かす分析の魅力

分析の苦手意識はどう変わった? 分析は比較なり、という言葉をきっかけに、これまで抱いていた「分析」という言葉への苦手意識が和らぎました。分析を「要素に分解し、比較する」とシンプルに捉え直すことで、データ分析の目的や方法を改めて見直す機会となりました。また、比較する際には、常に同じ条件である「Apple to Apple」を心がけることが重要であると理解できました。 継続率向上の秘訣は? 分析の目的を明確に定めた上でデータを取り扱い、最終的には意思決定に結びつけることが目標です。特に、サービスの継続率向上に向け、何があればサービスが続けやすいか、または辞めてしまうかという点から、顧客ニーズをより深く分析していきたいと考えています。 資料の真意は何? これまで、分析担当者が作成した資料をそのまま受け取るだけでしたが、今後は「何の目的で、どの要素を比較しているのか」を意識して資料を読み解くよう努めます。さらに、顧客のサービス継続率や利用・活用率といった数値を日々確認し、昨年比の大まかな変動だけでなく、そこから導き出せる具体的な示唆についても考察を深めていくつもりです。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

戦略思考入門

ナノ単科で実感する経済の秘密

規模経済を探るのは? 本講座を通じて、まず「規模の経済性」について学びました。固定費と変動費の分析を正確に行わないと不経済に陥る可能性があるため、コスト構造の把握が非常に重要であると実感しました。 習熟進展はどう考える? 次に「習熟効果」に関して、累積的な生産性の向上がコスト削減に寄与する一方、経験や知見が一定の段階に達すると効果が薄れる可能性があるという点を学び、業務改善のタイミングを見極める大切さを感じました。 範囲効果は何か? また「範囲の経済性」では、既存の資源を他の事業にも活用することで、個別に行う場合よりも効率的にコストを削減できることに気づかされました。技術投資のシナジーを活かし、新規事業の検討につなげる視点が印象に残りました。 ネット未来はどう? 最後に、「ネットワークの経済性」については、参加者が増加するほど利便性が向上し、実際のフィードバックが大きな効果を生む仕組みがあることを学びました。現状、SNSなどの活用が十分でないため、今後の展開に向けてネットワーク利用の検討が必要だと感じました。

データ・アナリティクス入門

考える力を広げる3C4P活用術

フレームワークの効果は? ゼロベースで仮説を立てるより、フレームワークを用いることで視点が広がり、仮説の網羅性が向上すると感じました。これまでは感覚に頼ってひとつの答えに固執することが多く、思考が止まる場面もありました。しかし、実践演習では3C4Pを活用することで、問題に対して一歩踏み込んだ考察ができるようになりました。 データ収集の意義は? また、仮説検証においては、自分に都合の良いデータだけでなく、比較のための情報を収集する重要性を学びました。反対意見を含む情報をも集めることで、仮説の説得性が高まりました。提案する側とされる側では視点や優先順位が異なるため、複数の仮説を持つことが必要だという考えにも納得できました。 目的と結論の整理は? さらに、仮説には問題解決だけでなく、目的や時制で整理される結論の仮説があることを知りました。問題解決のプロセスであるWhat、Where、Why、Howという問いは、日々の目標設定において部下との面談で活かされ、お互いに何が問題で何に取り組むかを具体的にすり合わせることができたと実感しています。

データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

クリティカルシンキング入門

論理ツリーで広がる視野の秘密

全体像の理解は? この学習を通じ、まず視点、視座、そして視野を広げることの大切さを実感しました。全体像をロジックツリーで整理し、そこから各要素に分解して考える方法は、知識を俯瞰的に捉える上で非常に有効だと感じます。帰納法と演繹法をバランスよく活用しながら、具体的な事例と抽象的な原理とを行き来するアプローチは、議論の広がりや深さを生み出す重要な手法だと思います。 論理と事例の関係は? また、今回の学びでは、発想が偏らないように訓練する頭の使い方や、クリティカルシンキングの必要性を改めて認識しました。自分自身の経験や直感だけに頼るのではなく、なぜその結論に至るのかを繰り返し問い、ファクトに基づいた判断を行うことの大切さが印象に残りました。 思考整理の秘訣は? さらに、一度立ち止まって冷静に考える習慣も身につきました。すぐに答えを出さず、じっくりと思考を整理することで、主観と客観、具体と抽象のバランスが取れた意見形成が可能となり、チームとしての合意形成にも良い影響を与えると感じています。

職種が「クリエイティブ(デザイナー・プロデューサー・クリエイターなど)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right