クリティカルシンキング入門

仮説から紐解く学びのヒント

どの切り口で捉える? ある事象のデータを分解する際、まずは仮説を立て、切り口を明確に設定して可視化することで、精緻な結果を導き出すことができると感じました。 本当の答えは? また、目の前にある「いかにも」正しそうな答えに安易に飛びつくのではなく、一旦冷静になり、本当にその答えで問題ないのか疑問を投げかけ、深掘りする姿勢が大切だと実感しています。 どう分解すべき? さらに、データを漏れなくダブりなく分解することが、本質にたどり着くために重要であり、この考え方は日常業務にも大いに活用できると考えます。 グラフは説得力? 具体的には、新商品企画の提案などで顧客データを分析する際、この手法が大いに役立つと感じています。視覚化されたグラフは、商品提案の信頼性を伝える上でも非常に有効です。 数字で伝える? また、数字を用いた説明を普段の業務に取り入れることで、他部門とのコミュニケーションがスムーズになり、その必要性をより明確に伝えることができると考えています。 発想はどう磨く? 最後に、仮説の立て方や切り口の持ち方は状況に応じて変化する部分もあり、どのような発想が最も効果的なのか、その上手なやり方についてもぜひ意見を聞いてみたいと思いました。

データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

クリティカルシンキング入門

伝える技術が劇的に向上した学びの旅

伝える目的は何? 「伝える」という点において、目的の重要性を再確認しました。前回と同様に、「誰に対して、どのようなことを求めているのか」を明確にすることが、伝達行動の鍵であると感じました。今週の学習では、視覚化によってどのように伝わりやすくなるかについて、多くの気づきを得ることができました。資料を作成する際、「これくらいわかるだろう」と思い込みがちですが、読み手の負担を軽減することが重要であると意識します。 資料作成の工夫は? アンケートや施策効果検証においてグラフや資料の作成を行う機会が頻繁にあります。最近ではCM効果検証の報告資料をまとめましたが、グラフの作成方法や強調すべきポイント、そして見やすさの追求において不足している部分が多いと感じました。資料を見返すと、多くの学びがあり、次回の資料作成に活かしたいと思います。 説明方法はどう? 週明けには、施策の打合せで概要を説明する機会があります。その際に、誰に伝えるのか、どのポイントが重要なのか、そして伝えたいことは何かを整理したいと思います。これを視覚化(文章に起こすこと、比較表やフロー図を作成すること)を通じて、初見でも理解しやすい説明をできるよう準備を進めたいと考えています。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

クリティカルシンキング入門

テキスト×グラフで楽々会議

伝え方の工夫は? 人に何かを伝える際、文章を美しく整えるだけではなく、相手に負担をかけずに理解してもらえる工夫が必要であることを学びました。また、グラフには多様な用途があり、状況に応じて適切に使い分けることが大切だと実感しました。 資料作成はどうする? これまでプレゼンテーションの際にのみ使用していたスライドですが、口頭で説明するだけではなく、テキストとグラフが連動する「読めばわかる」資料作りを実務でも試してみようと思います。この学びにより、自身の説明負担が軽減されると同時に、相手の理解も深まり、結果として会議時間の短縮にもつながると感じています。 提案資料の改善は? また、予算の確保やイベントの実績報告など、提案資料に活かせると実感しました。予算獲得のためには「なぜそれが必要なのか」「根拠は何か」を参加者全員が理解して納得することが必要であり、今回の学びを基に、事前の打合せで内容をすり合わせられると考えています。今までテキストとグラフの整合性が取れていなかったために相手に違和感を与えていた点を改善し、どのような情報をどのグラフで表現するのが最適かを考慮しながら、視覚的にも分かりやすい資料作成を心がけていきます。

データ・アナリティクス入門

自社WEBメディアの問題解決に挑むリアルな試行錯誤

ミュージックスクール問題解決の手法は? 実際にミュージックスクールの課題をデータを用いて分析し、解決策を検討したところ、リアルな問題を考えることで、自分に置き換えリアルにイメージできるようになってきたと感じています。問題を問題解決ステップのWhat、Where、Whyまでを整理する習慣を身につけたいです。 WEBメディア運用でのベストプラクティスは? 私は自社WEBメディアの運用に従事しているため、以下のアプローチを取りたいと思います。まず、現状における問題を特定し、What、Where、Why、Howの各要素に分けて進めます。そして、A/Bテストやサイト上でのサムネイルの策定に時間をかけ、広告でのABテストにも時間をかけることで、効果を出していきたいです。 課題解決のプロセスで重要なことは? 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道だと思いました。また、正解がない場合も広い視野を持ち、トライアンドエラーの精神で複数の選択肢を視野に入れて構築していくことが重要だと考えます。短期・長期のモデルを検討しながら、結果をしっかり分析し、最大限の効果が現れるように見極められるようになりたいです。

デザイン思考入門

体験から生まれる驚きと気づき

体験から何を感じた? 実際に体験することで、ユーザーの気持ちに気づく大切さを学びました。調査実施時、直接体験できない場合でも、身近な人々の行動を想像し、その視点から課題やニーズを探ることが重要であると感じています。さらに、可能な範囲でインタビューを実施し、具体的な問題点や求められているものを丁寧に理解するよう心がけています。 体験が生む共感とは? また、実際に体験しなければ気づけない部分が多いことを改めて実感しました。ユーザーが体験している状況を自らも体験することで、共感の場が生まれ、より深くユーザーの視点を理解できると感じています。 商品開発のヒントは? 一例として、キリンの第3のビール『本麒麟』の開発プロセスが紹介されました。まず定量調査で過去の失敗を洗い出し、その結果を踏まえて定性調査を実施することで、ユーザーニーズ(インサイト)を具体的に把握。このプロセスは、社内メンバーを説得する際の根拠となり、商品開発への示唆にもつながると学びました。 体験で共感深まる? さらに、バックパックに関する事例では、ユーザーと同じ体験をすることで得られた気づきが、より深い共感へと結びついたことも印象に残りました。

データ・アナリティクス入門

問題解決のプロセスを活かす学び

問題解決のプロセスとは? 問題解決には明確なプロセスがあります。具体的には、What、Where、Why、Howの6つのステップがあり、この順番を守ることが重要です。まずは、なりたい姿と現状のギャップを把握することが分析の第一歩です。そして、解決方法を考える前に、現状で起きている問題の状況や原因を見つけることに時間をかける必要があります。 自分の思考の癖をどう活かす? 私の場合、すぐに解決方法(How)に飛びがちです。しかし、自分の考え方の癖を知ることも問題解決において重要です。オープンデータから社会課題を洗い出すのが現在の業務ですが、仮説に対して問題を絞り込む際にロジックツリーが役立ちます。基本的にはチームで取り組むため、思考のプロセスを視覚化・言語化することで、情報共有を齟齬なく行えるようにしています。 データ分析で何を学びたい? データ分析を体系的に学ぶことで、ロジカルに再現性のあるデータ分析に取り組みたいと思っています。特に、ロジックツリーを作る際には「手書き」を心がけたいと思います。紙に書くことで思考が整理され、重要事項には丸をつけたり矢印を使ったりすることで、優先順位を決めるのに役立ちます。

リーダーシップ・キャリアビジョン入門

実践で磨く動機付けと任せ方

講義内容はどう感じた? 動機付けと衛生理論についての講義が非常に理解しやすく、実践に活かせそうだと感じました。 任せ方に気づいた点は? また、実行段階でのメンバーへの任せ方にも新たな気づきを得ました。具体的には、メンバーに執行責任を自覚させ、リーダーは必要最低限の干渉にとどめることや、メンバーが自ら決めたプロセス通りに業務を遂行しているか、また当初想定した結果が得られているかを定期的に確認する機会を設けることが重要だと改めて感じました。 AI演習の成果は? さらに、AIとのロールプレイを通して、メンバーのモチベーションの醸成や仕事の任せ方について、これまで十分に伴走できていなかった点に気づくとともに、今後の改善の必要性を感じました。 今後へどうつなぐ? 今後は、メンバーがどのようなモチベーションで業務を遂行しているかを意識的に捉え、動機付けのフレームワークを活用して支援していきたいと考えています。また、日々の1on1ではトピックを絞り、一つのプロジェクトに対してより丁寧に伴走するか、またはプロジェクトの進行状況を確認するための別ミーティングを適切に設けるなど、取り組みを工夫していく予定です。

クリティカルシンキング入門

問いを共有し、成功への最短距離へ

問いの意味は何? 「問いから始める、問いを残す、問いを共有する」ことの重要性を再認識しました。特に「問いを共有する」ことは、丁寧さが重要だと感じています。複数の人と業務を進める中で、たとえ正しい問いを見つけても、周囲が同じ問いを共有していなければ、議論が散乱してしまいます。そのため、問いを見つけた後は、相手にしっかり伝えることを意識したいと思います。 どんな局面で役立つ? 業務を遂行する上では、このアプローチはどの場面でも活用できると考えています。具体的には、準備段階からミーティング、最終提案のフェーズに至るまで、常に意識したいです。その際に重要だと感じる観点は以下の通りです。まず、的確に課題を把握すること。次に、解決策の要素を多面的に検討すること。そして、視覚化して効果的に伝えること。また、相手の視座を持ち、関係者を納得させることが重要です。 どうすれば成功する? これらのステップを繰り返し行うことを意識します。まず、グラフ制作のようにトライすることから始めると、多くの発見があります。上記のステップを反復して実行し、所要時間を短縮することで、最短距離で成功を目指したいと思います。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

問題解決に役立つ分析ステップの探求

問題解決に必要なステップとは? 「What, Where, Why, How」のステップを意識することで、さまざまなことに安易に飛びつくことなく、順序立てて問題を解き明かせると感じました。問題の中で、利益を上げるために何をすべきかという設問に対しては、各項目の利益の占有率を金額で換算し、数字を比較することでインパクトの大きい箇所を見つけ出しました。まさに「分析は比較なり」と実感しました。 ギャップをどう示すか? 問題解決のプロセスとして、あるべき姿と現実を明確にし、そのギャップを数字で示します。収益構造を変数のロジックツリーに当てはめ、それぞれの変数ごとに金額換算して比較することで、インパクトの大きい部分を特定します。 効果的な分析の手順 具体的なステップとしては、まず目的を明確にすることから始めます。次にロジックツリーを作成し、変数分解と層別分解を行います。特に、ロジックツリーを2種類作る際は、その目的を明確にすることで手段が目的化しないように注意します。意味のある分析の切り口を意識することが重要だと考えています。それを達成するためにも、目的の明確化が大切であると感じました。
AIコーチング導線バナー

職種が「クリエイティブ(デザイナー・プロデューサー・クリエイターなど)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right