データ・アナリティクス入門

ロジックツリーで描く未来

4視点の意義は? 問題解決のステップとして、「What」「Where」「Why」「How」という4つの視点があることを学びました。関係者間で「あるべき姿」や「ギャップ」の認識を共有する重要性にも触れ、特に問題を特定する際には、単なるアイディアに頼らず、定量的な数値を比較することで、より客観的に捉えられる点が印象的でした。 原因はどう見る? また、原因分析においてはロジックツリーを用いることで、漏れなく重複なく問題を分解できることを実感しました。全体を複数の部分に分ける「層別分解」や、詳細に細分化して検討する「変数分解」といった手法も、新たな気づきとなりました。 合意形成は可能? チームプロジェクトでは多くの関係者が参加するため、事前に「あるべき姿」や「ギャップ」を共有し、チーム内で合意形成をとることが必要だと感じました。特に、最初の「What」が明確でないと、後のステップで方向性がぶれてしまうため、優先的に確認しながら進めることが重要です。 ロジックの活用は? MECEの考えを意識していましたが、実際にロジックツリーを書き起こして検討する機会が少なかったことは反省点でした。今後は、層別分解と変数分解をそれぞれ活用し、チーム内の合意形成に役立てていきたいと考えています。 手順の意図は? また、クリエイティブな業務では、Howのアイディアから発想してしまいがちです。そのため、4つのステップの順序に沿って思考する癖をつけることが必要だと感じました。日常生活では、電車内の広告などを見ながら、「何を狙っているのか」「どのような問題が起こり得るのか」「その原因は何か」「どうすれば解決できるか」といったプロセスを意識してみるとよいでしょう。さらに、業務中にも毎日5~10分間、ロジックツリーを用いてざっと洗い出す習慣を取り入れていきたいと思います。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

データ・アナリティクス入門

3W1Hで見える課題発見の瞬間

プロセスの意味は? WHAT・WHERE・WHY・HOWという問題解決のプロセスを理解できました。実践演習では問題と対策を混ぜて考えてしまったものの、3W1Hを用いることで思考が整理されると感じました。ただし、問題を特定するための良い問いを思いつけるかどうかは課題と感じ、今後の研修中に学びを深めたいと思います。 ロジックツリーとは? 問題を特定するには、ロジックツリーを用いて要素を分解する方法が効果的です。現状を図解しながら現場把握を進めることで、抜け漏れを防ぎ、問題発見のきっかけにもなると実感しました。 改善の手法は? また、あるべき姿と現状を比較し、何が問題で、どの部分を改善すべきかを考えるアプローチは非常に有効です。MECEの原則に注意を払いながらも、完全なもれなくダブりなくを目指すのは難しく、目的と手段が逆転しないよう、今後更に意識して取り組みたいと感じています。 評価の見直しは? 中間評価の時期において、目標と実績の乖離が見られる場合は、文章のみの報告ではなく、ロジックツリーなどを用いて状態を可視化することが重要です。こうすることで、どの問題に取り組むべきかを明確にし、下期に向けた目標値の妥当性や追加施策を再考することができると思います。 データの意義は? また、毎日配信される売上データは、チェックや比較を通じて変化に気付き、疑問を持つ力を養うのに最適な題材だと感じています。 情報不足の理由は? 最後に、問題解決のためにデータベースを確認すると、必要な項目が不足していたり、詳細なデータが得られなかったりするケースがあります。逆に、無駄な項目が多い場合もあるため、組織全体で問題を洗い出し、ロジックツリーを活用しながら必要なデータを蓄積できるよう、項目の設定に努めたいと思います。

データ・アナリティクス入門

挑むデータ、拓く未来

データで信頼築ける? データが少ない状況では、医者の診断も検討はずれになりがちです。そのため、血液検査や各種データの収集、統計や原則に基づいた仮説の設定、そして一定期間の経過観察と検証を重ねることが求められます。こうした一連のプロセスは、日常生活の延長線上にある行為とも言え、直感に頼るのではなく、データを根拠とした理論的な意思決定に楽しさとやりがいを感じています。 どう伝えるのが良い? 日本の人口のごく一部がクリスチャンであり、その中でも特定の宗教団体に所属する会員はさらに限られています。残りの多くの人々に対して、回復された福音をどのように伝えるかという大きな課題に取り組んでいます。SNSやインターネット、テレビ、新聞、雑誌、口コミ、広告トラック、アドバルーンなど、さまざまなメディアを駆使し、目標達成の手法を模索中です。 伝わりにくいのは? もし、ひとりの会員が教会のことを知らない多数の人々に対して、漏れなく情報を伝えられたなら、その印象は全体に広がるでしょう。しかし、伝達だけではなく、クリック率やコンバージョン率といった指標を通じて、実際に人々の生活に喜びをもたらす変化を実現するまでには、段階的にその数が絞られていくのも事実です。それでも、たとえひとりのためであっても、自分のデータ分析が役に立つのなら、人生を賭ける覚悟で取り組むべきだと感じています。この講座と出会い、周囲から良い影響を受けられていることに感謝しています。 成果の極意は何? 毎週、成果を最大化するためのアイデアを考える時間を意識的に持ちたいと思います。インスピレーションが降りることを期待しながら、今週はABテストを実施してみようと考えています。データと真摯に向き合いながら、突破口を見つけ、進むべき道を探し続けたいです。

戦略思考入門

誰にも真似できぬ自社戦略の極意

目的意識はどう考える? 講義を通して、まず「戦略は目指すべきゴール(目的)ありき」という基本理念を改めて実感しました。その上で、現在の状況から目的地までのルートを明確に描くこと、そして有限なリソースを踏まえた上で戦略を立てる必要性を感じました。また、リソースが限られている分、競合との差が生じるため、独自性を持つことがより一層重要であると考えました。 独自路線は本当に? 最短・最速のルートは誰もが求めるものですが、実際に実行に移すことは容易ではありません。自社の保有するリソースや競合とのリソース差といったさまざまな要因を鑑みると、単に最速のルートを目指すのではなく、「自社にしかとれないルート」を構築して実際に実行することが戦略として意義があると感じました。ウェブ上でそのようなルートの事例を見ることも多いですが、背後にある「目的」と「独自性」に改めて目を向け、業務に活かす姿勢が求められると実感しました。 施策はなぜ必要? 私はクライアント支援の業務に携わっており、施策の提案や実行において、なぜその施策を行うのかという目的を見失わないよう、常に立ち返る必要があると感じています。施策が目的を達成できるか、そしてその過程で独自性が発揮されているかを再検討しながら業務を進めることが重要です。今後、施策実行前のブリーフィングを徹底し、チーム全体で目的を共有できるように資料化することで、目標達成に向けた意識を高めたいと考えています。 競合状況は理解済み? また、独自性を追求するためには、市場構造や競合状況を常に把握し、情報をアップデートする仕組みが必要だと感じました。支援する側として一つの市場に偏らず、幅広い業界の情報にアンテナを張り、バランスの取れた視野を保つことが重要だと考えています。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

クリティカルシンキング入門

対話と振り返りで磨く思考術

偏りに気づいた瞬間? 思考に偏りがあると指摘された直後にも、ついいつもの偏った考え方に戻ってしまう自分を実感しました。こうしたクセの根強さを肌で感じ、一筋縄ではいかないと分かりながらも、あきらめずに地道なトレーニングを継続する工夫をしていきたいと思います。 頭の使い方はどう? 人間は偏りがちであるため、頭の使い方を知識として学び、実戦で使えるようにトレーニングすることが大切だと改めて感じました。効率的な思考を身につけるためには、自分の考え方を客観的に見直す習慣が必要です。 対話で視点変わる? また、偏りをなくす一つの方法として、他者との対話を取り入れることに納得感を覚えました。今後は、一回一回のコミュニケーションを大切にし、苦手意識を克服するために積極的に対話の機会を作っていきたいと考えています。 講座で学んだことは? この講座での学びは、クライアントとのコミュニケーション、議事録作成、提案書やデザイン提案、画面要件検討、掲載項目定義、要求定義、レポート作成といったさまざまな場面で役立つと確信しています。 行動の鉄則は何? 具体的な行動としては、まずクライアントが話す背景を想像し、思考の偏りがないか、また他の観点から見るとどうかを常に確認していきます。発言する前には「なぜ?」や「本当に?」と自問し、十分に考えた上で発言するよう努めます。さらに、提案準備の際には提案ストーリーのつながりや、情報の抜け漏れがないか、問題解決に直結する切り口になっているかなど、資料やストーリー全体をチェックします。加えて、他者からのフィードバックを積極的に取り入れ、偏りを修正するための工夫をし、客観的に振り返るための記録も継続的に行っていきます。

クリティカルシンキング入門

問い続ける心が未来を拓く

自分に問い続ける理由は? クリティカルシンキングとは、もう一人の自分を育てること、すなわち自分に問い続ける習慣を身につけることだと考えます。自分自身の思考に対して常に疑問を持ち、問いかけることで、さらなる成長を図ることが大切です。 偏りはどう克服する? 考えやすい部分だけに注目すると、思考が偏り抜け漏れが生じてしまいます。実際の演習では、思いつくがままに回答を出していた結果、必要な要素を見落としてしまいました。その打破法として、物事を「もの」「人」「場所」「時間」の4Wに分類して考えることで、要素分解の重要性を実感しました。 異なる意見は大切? また、グループワークや他人の回答を通して、異なる視点で物事を捉える必要性を認識しました。自分一人では気付かない部分も、他者の意見を取り入れることで客観的に理解できるため、視野・視点・視座を意識することが求められています。 考える目的は何か? 今回の演習でのポイントは、以下の3点に集約されます。まず、何のために考えるのかという目的を明確にすること。次に、自分の思考の癖を把握し、偏りを修正できるよう努めること。そして、日々「自分に問い続ける」習慣を身につけることです。たとえば、日常の人員配置の場面では「本当にこれで良いのか」と自分自身に問いながら判断し、その理由を簡潔に説明できるようにしています。 多角的提案はどう? さらに、提案を考える際には、異なる立場になりきって多角的に物事を眺めることを意識しています。もし自分が上位の立場や、別の部署のメンバーだったらという視点を持つことで、より幅広い視野からアイデアを練ることができると実感しました。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

クリティカルシンキング入門

思考の癖を超えて、新たな発見へ

自問自答の意味は? 人にはそれぞれ「思考の癖」があることを知り、とても勉強になりました。この前提を理解することで、自分自身を疑い、自問自答を繰り返す作業が思考力の向上に繋がると感じました。また、重要なのは目的を把握するだけではなく、それを「押さえ続けること」だと思いました。時折できる瞬間とできない瞬間があるため、なぜできなかったのか、単に意識が不足していただけなのかを分析し、客観的な視点を持つことを習慣化していきたいです。 業務整理のコツは? 業務への活用については、現在取り組んでいる売上などの社内データの統合・管理運用プロジェクトに役立てたいと考えています。このプロジェクトでは、情報が散乱しており、様々なツールが存在する中でどのように整理するかを考える必要があります。また、各部署の意向が混在している状況において、調整は重要ですが、その前にプロジェクトの目的や理想の状態を常に念頭に置いて議論を進める必要があると感じました。他部署の人たちにも納得してもらうために、わかりやすい論理構成や伝え方にも活用できると思います。 客観視点の意義は? まずは常に客観的視点を持ち続けることが大切です。アイデアや結論が出た際には、「本当にそうなのか」「抜け落ちはないのか」「そもそもどのような目的だったか」と自問自答し続けることが重要です。 会議をどう活かす? また、客観的な視点を持てない瞬間もあるため、その後に会議を振り返り、「もしその場で客観的な視点を持てたらどうなったか、目的に立ち返ったらどうなるか」と想像し、常に客観的視点を維持したいと思います。

データ・アナリティクス入門

プロセスで紐解く成功の鍵

問題の原因は何か? まず、問題の原因をプロセスごとに分けて考える手法は、表示回数、クリック数、申し込み数の比率を提示することで、単に回数が多いという表面的な仮説だけでなく、表示回数に対してクリック数が多い点や、クリックから申し込みへの転換率の高さなど、各段階ごとに比較が可能となり、疑問点が見つかりやすくなると感じました。 対比で何が分かる? また、ある事象を自社とそれ以外といった対となる概念で見ることで、思考の幅を広げ、仮説が出しやすくなるという視点にも共感しました。この方法は、試行錯誤の中で新たな発見につながり、より効果的な改善策を導く手がかりとなると思います。 ABテストの本質は? さらに、ABテストについては、要素を限定して2つの試作品を比較する手法として、検証の目的を明確にし、1要素ずつ慎重にテストを進める必要があると実感しました。特に、環境要因に左右されないように、同時期に実施する点は非常に重要であると考えます。 遅延原因はどう把握する? また、デザイン制作の遅延要因の分析において、プロセスを分ける方法は大変有用だと感じました。理由を分類することで、自分たちの問題なのか、他の要因にあるのかを切り分けながら対策を進められる点に納得しています。 効果的な手法は何か? 最後に、ABテストの進め方を見直す必要性も実感しました。簡易なオンラインテストで漠然とどちらが良いかを判断するのではなく、検証の目的を絞って段階的に実施することで、デザインの改善点を具体的に確認しながら進める手法に大いに可能性を感じました。

職種が「クリエイティブ(デザイナー・プロデューサー・クリエイターなど)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right