クリティカルシンキング入門

問いの力で生産性アップと新ビジネスアイデア創出

問いの形にする重要性とは? イシュー特定のためのポイントとして、「問いの形にする」ことの重要性を具体例を交えて理解することができた。自身の業務で問題解決や新たな取り組みに向けた課題設定の場面で考えが滞るのは、問いの形にできていない場合が多いと感じた。問いの形にすることで具体的に考えることができ、仮説が導き出せる。この仮説を検証し、その結果を評価・解析することで、PDCAを確実に回すことができるようになる。 ピラミッドストラクチャーの活用法は? また、ピラミッドストラクチャーを用いた論理構成の組み立て方や、「SO WHAT」「WHY SO」の視点で自身の論理構成をチェックする方法を型として理解できた。これにより、これまで何となくやっていた内容を整理し、他者への説明や資料作成の場面で仕事の生産性を向上させることができると感じた。 フレームワーク活用で何が変わる? さらに、新たなビジネスアイデアを考える際には、これまで活用してきたフレームワーク(P.E.S.T、3C、5フォースなど)から導出した事実や結論をビジネスアイデアの論拠として説明するため、ピラミッドストラクチャーを用いて論理を構成する。それをもとに、「MECEになっているか」や「さらに考える余地はないか」などを検討し、結論―根拠―それを支える事実という構成で相手に伝わる資料・話し方を組み立てる。 イシューの適切性をどう確認する? 表出している問題の解決や新たなことを考える際の課題設定の各場面においては、常に「今解くべき問いは合っているか」を自問する。また、適切でないイシューから出したアウトプットは、報告を受ける相手にとって価値のないものであることを肝に銘じる。 部下と共にイシューを磨くには? 最後に、自身のイシュー設定力を向上させるために、部下との対話の中で相手が「イシューを捉えているか」を確認する。捉えられていない場合には、全体課題の中のどの部分を捉えて話しているのかを常に考え、自身として考える機会を増やすよう心掛ける。

クリティカルシンキング入門

思考の整理で得られた新しい発見

文章の明確化ポイントは? 文章をうまく伝えるためのポイントはいくつかあります。まず、主語と述語を明確にし、読点の位置を意識します。また、修飾語を使って補足し、一文を長くしないよう心がけることが重要です。 論理的に書く方法は? 文章を書く際には、まず自分の思考を論理的に整理することが必要です。ピラミッドストラクチャーを活用して、結論を中心に大きな柱を立て、それを細分化して具体化します。これにより、伝えたい情報や相手が知りたい情報を効果的に整理できます。重要なのは、情報を漏れなく整理することです。 双方向の理解をどう実現する? 具体的な状況に応じて、「相手が知りたい情報が伝わる」「自分が伝えたいことが伝わる」という両方を実現する内容を目指します。これにより、メールやチャットでのやり取り、報告資料の作成やプレゼンテーション、社内外への情報共有が円滑に進みます。 社内コミュニケーションの工夫は? 私たちの会社では、文章でのコミュニケーションが主となっています。そのため、チャットツール内でのやり取りでも簡潔で読みやすい文章構成を意識します。「全体像」から「骨組み」、「具現化」へと進む構造を念頭に置いたアウトプットを心掛けます。 言語化スキルの向上方法は? また、私はピラミッドストラクチャーを使って様々な視点からの分析結果を簡潔に伝えることを心掛けています。「結論」から入り、「根拠」そして「具現化」という構造で報告を行うことで言語化のスキルを向上させます。これは、最終的に思考力を鍛えることにつながります。 チャットでの要点整理法とは? チャット文章では、要点がまとまった伝え方も重要です。「相手が知りたいこと」や「自分が伝えたい要点」が明確な文章構成を心掛けます。論理的な文章を書くことで、会話の中でも即興で要点を伝える能力を育てます。また、異なる部署とコミュニケーションを取る場面が多いため、専門用語を多用せず、相手が理解できる表現方法を意識します。

マーケティング入門

ポジショニングの重要性を再確認した学びの旅

ポジショニングの新たな理解 ポジショニングについて、私はポジショニングマップを見たことはありましたが、価値の掛け合わせによって優位性が導き出されることを新たに整理しました。また、市場に顧客が存在し、認めてもらえるかという視点や調査も必要であり、ポジショニングは非常に難しい舵取りだと感じました。 ターゲット理解の難しさ ターゲットを理解する点についても、理論的にはわかっていても実践できていないことが多いと気づきました。例えば、商品に関して「にごり」などと表現されてもピンとこない場合があります。そのため、どうすれば適切に伝わるか、最適な手段を選ぶ必要があると理解しました。 自社ポジショニングの再考 次に、弊社のポジショニング(SES)の考察についてです。まず、業界内で自社がどういうポジショニングを取っているのかを考える必要があります。特に、営業担当者とのコミュニケーションが重要です。「顧客とのやり取り」を知らないので、営業担当者との対話を通じて顧客要望を聞き出したいと思います。また、自身の業務上のポジショニングについても考えるべきです。 社員間での理解とコミュニケーション 社員間で自社ポジショニングの理解と今後について話し合う場も必要です。現在の自社のポジショニングがSES(開発)✖️IT教育のような事業的特徴の掛け合わせであると認識していますが、その優位性と差別化が弱まっていると感じています。そのため、企業の現状と将来性を理解するためのコミュニケーションの場を設けることが重要です。 個人としての価値の評価 最後に、自分自身がどのような価値(できることや経験、スキル感)の掛け合わせができるのかを考える必要があります。もし企業としての差別化が難しい場合、一社員としてどのような価値提供ができるかを棚卸しし、優位性や差別化を出す方法を模索します。至らない場合は、「今後どういった価値の掛け合わせができればよいか」をイメージしてみることも有効です。

戦略思考入門

目的を見失わず視野を広げる戦略

目的はどう定める? 今回の学びを通じて、目的の重要性と視野を広げることの大切さを改めて認識しました。目的を明確にすることは、戦略的思考の基盤であると強く感じます。日常の業務では「何をやるか」に意識が向きがちで、「何のために行うのか」が見失われがちです。このため、チーム内で建設的な議論ができないこともあります。まずは目的を明確にし、常にその目的を意識することを継続的に実践していこうと考えています。 視野はどう広げる? 次に、視野を広げることの重要性です。自分の業務に専念するあまり、自社や自部門の課題に意識が集中してしまうことがあります。そこで、フレームワークを活用して視野を広げることを心掛けたいと思います。この視点は、チームの長期計画を考える際のゴール設定にも役立ちます。 方向性はどう見極める? これまで、経営からのメッセージを咀嚼し、アクションプランを設定していましたが、これからは3C分析の注意点を活かし、「市場と顧客」「業界と競合」を分けて考えます。顧客の特定自社とのギャップから、どのようなKSFを設定するかを考えることで、自分たちの目指す方向を明確にします。目標設定の際は進捗が測れるように、定量的な指標を用いることにします。また、これらの方法論やゴール設定は、自分ひとりではなく、チームメンバーと一緒に考え、思い込みをなくして最短距離で目標に到達できるように進めていきます。 具体策はどう実現する? ゴールを具体的に設定するために以下を実践します。まず、顧客とサービス領域を明確にすることです。顧客は単に社員ではなく、どのような社員なのかをペルソナを使って明確化します。そして、その顧客のニーズや課題を浮き彫りにし、提供するサービスを具体的にしておくことが重要です。また、そのサービス提供の究極の姿を明確にします。次に、3C分析を行い、KSFを設定します。そして設定したKSFに基づき、あるべき姿を数値で表現するように心掛けます。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

クリティカルシンキング入門

思考のバランスを育てて、新たな視点を得る

偏った考えは何故起こる? 考えには偏りや制約があることを学びました。人は無意識のうちに自分の好きな考え方に偏りがちで、情報を集めたり思考を巡らせたりしています。このため、重要な情報を見落としてしまい、結果として結論が変わることもあります。また、演習を通じて、制約がないと逆にアイディアが広がりにくい特性があることに驚かされました。 どうして自問自答する? 「もう1人の自分を育てる」ことの重要性を感じました。結論を導き出す際には自問自答を繰り返すことが大切です。業務においては、様々な情報を幅広く浅く得ることが求められますが、それらの中から何が重要なのか、どこまで深掘りすべきかを自問しないと表面的な情報だけで結論を下してしまいます。講義で学んだ視点、視野、視座といった多角的な視点を通じて、手元の情報が十分かどうか、なぜそのように考えたのかを問い続けることが重要だと理解しました。 情報をどう活かす? 私の所属する部門では、日々膨大なデータや事象が発生し、担当者から報告を受けていますが、私はそれらの情報を点で捉えがちです。学んだ「もう1人の自分を育てる」方法を通じて自問自答を繰り返し、思考の偏りをなくしてフラットに物事を捉えられるよう努力しています。これにより重要なポイントに気付け、本質を捉えられるようになると考えています。 目的は何から整理する? 目的を整理する際には、何が目的で、誰に何をどう伝えるのか、必要な情報をフラットな目線で整理します。情報収集が終わった後で、その情報が十分か、様々な視点で再確認することが重要です。最終的な結論に際しては、自分が正しいと考えるだけでなく、もう1人の自分を作り出し、なぜそう考えるのかと問い続け思考を深めていきます。 他者の意見は役立つ? こうしたプロセスを進めるにあたり、他者の意見も取り入れながら、自分の思考の偏りや浅さを確認し、より良いアウトプットを目指しています。

「表 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right