データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。

クリティカルシンキング入門

視点を広げる新しい思考の旅

自分の頭、どう使う? クリティカルシンキングにおいて重要なのは、自分自身の思考を客観的に見つめ、「もう一人の自分」を育てることです。人は無意識のうちに「制約」や「偏り」に誘導されやすいため、物事を俯瞰的に捉える力が求められます。これには、視点・視座・視野の広さが必要です。「頭の使い方を知る」ということが大切であり、これがクリティカルシンキングの本質です。 過去の選択は? 以前の私は、顧客から提示された「課題」に対して深堀をし、本質的な問題を見つけ出せることもありました。しかし、過去の経験や「従来の対応方法」に縛られていた場面が多々あったことを反省しています。これに対処するために、多くの関係者とコミュニケーションを取り、全体を把握するよう努めていました。しかし、今回学んだことから、「課題」を解決すべき問題として捉える前に、まず全体を俯瞰的に見渡し、真の課題を把握することが重要であると再認識しました。このようなアプローチを習得するのは時間がかかるかもしれませんが、より効率的な解決策を見つけるために、物事を客観的に見る姿勢を身につけたいと思います。 本当の問いは? 初めの一歩として、自分自身への問いかけを意識していきたいです。 1. 常に客観的に物事を見るよう心がけること - 提示された課題は本当に解決すべきものか? - これを検討する目的は何か?それを明確にした上で考える。 - 全体を見渡せているかを確認する(視点・視座・視野)。 - 自分の意見の根拠は何か?偏りや制約がないか検証する。 - その考えは直感や経験値に依存していないか、証明できるか? 2. 具体的でわかりやすい表現を心がける - 専門用語を多用しない - 誰にでも理解しやすい表現か - 必要以上に抽象的でないか - 問題がすり替わっていないか このように、自分自身への問いかけと具体的でわかりやすいコミュニケーションを通じて、より効果的なクリティカルシンキングを磨いていきたいと思います。

戦略思考入門

効率よくビジネスを進化させる秘訣

学びを通して得られた経済性の理解 ビジネスのメカニズムとして、様々な経済性について学びました。コスト低減策については、これまで100か0かという極端な判断をしがちでしたが、適切なスケールメリットを見つけることができるようになりたいと感じました。 SNSマーケティングの重要性とは? ネットワークの経済性も現代のビジネスには不可欠だと痛感しました。SNSを利用したマーケティングや広報活動は、企業がToCビジネスを展開する上で非常に有効です。特に、私のようなOver40のビジネスマンにとって、この方面への感度が今後のビジネスに重要だと危機感を覚えました。 人的資本と範囲の経済性 私の会社ではITサービス事業を行っており、「規模の経済性」はあまり当てはまりませんが、「範囲の経済性」については人的資本の活用が重要です。新たな業務やプロジェクトに人材を充てる「化学反応」という表現が社内でよく使われますが、うまくいかないケースもあります。組織編制では能力や経験以外にも、外向性などの要素を考慮することで人的シナジーを高める必要があると感じました。 習熟効果とイノベーションの必要性 自社の事業は習熟効果の曲線で見ると中盤に差し掛かっていると感じます。固定費や人件費が上昇する一方で、サービスの価格は据え置きもしくはディスカウント状態です。これにより、将来的にイノベーションが必要だと危機感を覚えました。 適切な価格設定への試算方法 自社事業について、必要な収益を試算したいと考えています。人件費や共通コストを正確にプライシングに反映させることで、適切な価格設定を見極めたいと思います。 継続的な学びの重要性 自身の業務や思考方法も常にアップデートを心がけています。日頃から学びの時間を取り入れ、講座終了後も復習を行いたいと思います。また、定期的に動画学習を取り組むことで、「知識のインプット」➡「自分の考えをアウトプット」➡「業務への置き換え」というサイクルを継続していきたいです。

クリティカルシンキング入門

ビジネス文書・プレゼン資料を一段上の品質にする方法

学習を通じて得た新たな知識とは? 今回の学習を通じて、適切なグラフの選び方やスライドの作成方法、ビジネス文書がどのように読まれるかについて多くの学びがありました。以下に、それぞれのポイントについて述べます。 グラフ選びでデータをより見やすく まず、グラフの見せ方についてですが、データの種類に応じた適切なグラフ形式を選ぶ重要性を感じました。例えば、時系列データには縦の棒グラフ、変化や経緯を表現したい場合は折れ線グラフが有効です。また、要素を表現する際は横の棒グラフ、要素間の比較には帯グラフが適しています。これにより、データが持つ意味を視覚的に明確に表現することができ、プレゼンの受け手にも理解しやすい情報を提供できます。 見る側に立ったスライドデザインは? 次に、スライド作成のポイントについて学びました。特に印象深かったのは、「見る側の視点に立って主題がわかりやすいように」作成することの重要性です。具体的には、グラフなどで見てほしい部分を強調するために矢印を使用することなどです。これにより、視覚的なガイドラインが提供され、見ている人がパッと理解できるスライドを作ることができます。 関心を引くビジネス文書の工夫 ビジネス文書に関しては、冒頭にアイキャッチを置く工夫が特に有用だと感じました。イメージが湧きやすい、意外性がある、具体的な理由や方法を知りたいと思わせるような要素を盛り込むことで、読む人の関心を引き付けることができます。これにより、実際のメールや案内文の返信率向上に繋がることを期待しています。 具体的な実践計画としては、リード向けメール作成の際には1日最低5件はアイキャッチを配置し、試行錯誤を重ねて改善を図るつもりです。また、フォロー結果を分析する際には1か月に1回以上、プレゼン資料の質とグラフの活用を意識して作成します。四半期ごとの報告プレゼン資料にもこれらの学びを反映し、より質の高い資料を提供することを目指します。 以上の点を踏まえ、今後の業務に活かしていきたいと思います。

クリティカルシンキング入門

問いの力で生産性アップと新ビジネスアイデア創出

問いの形にする重要性とは? イシュー特定のためのポイントとして、「問いの形にする」ことの重要性を具体例を交えて理解することができた。自身の業務で問題解決や新たな取り組みに向けた課題設定の場面で考えが滞るのは、問いの形にできていない場合が多いと感じた。問いの形にすることで具体的に考えることができ、仮説が導き出せる。この仮説を検証し、その結果を評価・解析することで、PDCAを確実に回すことができるようになる。 ピラミッドストラクチャーの活用法は? また、ピラミッドストラクチャーを用いた論理構成の組み立て方や、「SO WHAT」「WHY SO」の視点で自身の論理構成をチェックする方法を型として理解できた。これにより、これまで何となくやっていた内容を整理し、他者への説明や資料作成の場面で仕事の生産性を向上させることができると感じた。 フレームワーク活用で何が変わる? さらに、新たなビジネスアイデアを考える際には、これまで活用してきたフレームワーク(P.E.S.T、3C、5フォースなど)から導出した事実や結論をビジネスアイデアの論拠として説明するため、ピラミッドストラクチャーを用いて論理を構成する。それをもとに、「MECEになっているか」や「さらに考える余地はないか」などを検討し、結論―根拠―それを支える事実という構成で相手に伝わる資料・話し方を組み立てる。 イシューの適切性をどう確認する? 表出している問題の解決や新たなことを考える際の課題設定の各場面においては、常に「今解くべき問いは合っているか」を自問する。また、適切でないイシューから出したアウトプットは、報告を受ける相手にとって価値のないものであることを肝に銘じる。 部下と共にイシューを磨くには? 最後に、自身のイシュー設定力を向上させるために、部下との対話の中で相手が「イシューを捉えているか」を確認する。捉えられていない場合には、全体課題の中のどの部分を捉えて話しているのかを常に考え、自身として考える機会を増やすよう心掛ける。

「表 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right