データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

数字が魅せるSNS成功ストーリー

計算重視で成果は? 数値で表れない効果を具体的な数値に置き換える方法は非常に新鮮でした。直感だけに頼るのではなく、計算に基づいてコンバージョンレートを算出し、その結果を判断に反映させる重要性を、改めて実感しました。理論的に考えることの大切さを実体験として再認識できました。 SNS戦略はどう考える? 各SNSの特性を踏まえ、効果を最大化するためのアプローチを分析に基づいて決定する必要があると感じました。特にFacebookでは、以下の点がフォロワー以外のユーザーにリーチし、リーチ数やシェア数が向上する要因として考えられます。まず、ユーザーにとって有益で興味深い情報が含まれるコンテンツは、シェアされやすい傾向にあります。次に、画像や動画などの視覚的要素の活用が、ユーザーの関心を引き、シェア拡大につながります。また、ユーザーがオンラインで活発な時間帯に投稿することで、全体のリーチとエンゲージメントが向上することが期待できます。さらに、質問や呼びかけを通じたユーザーエンゲージメントの促進、適切なハッシュタグの使用、そして他のページやインフルエンサーとの連携も、投稿の拡散に寄与する重要な要素です。 インスタ投稿の極意は? 一方、Instagramでのリーチ数やシェア数を高めるためには、いくつかの施策が効果的です。投稿頻度を1日1回以上にすることで、多くのユーザーに接触する機会が増加します。また、ターゲットユーザーがアクティブな時間帯を分析し、最適なタイミングで投稿することがリーチ向上に大きく寄与します。さらに、再投稿を避け、独自のオリジナルコンテンツを作成することは、Instagramのアルゴリズム上も優遇されるため有効です。関連性の高いハッシュタグの活用や、コメントなどを通じたユーザーとの積極的なコミュニケーション、そして「いいね+フォロー」などの参加しやすい条件でのキャンペーン投稿も、投稿の発見性やエンゲージメントを高める効果が期待できます。これらの施策により、投稿が「発見」タブに掲載される可能性も高まります。 データで最適化する? また、2月のSNS投稿の各コンテンツ別の結果をまとめ、そのデータに基づいて仮説を導き出す時間を確保する必要があります。CFMの効果最大化には、シェアされることと夕方以降の投稿が鍵であると考えています。アクティブな時間帯に投稿しているものの、Instagramでの投稿内容や曜日についても、仮説を立て、会議で検討するべき点が多いと感じました。

戦略思考入門

日常で見つける戦略のヒント

戦略思考の定義は? これまであいまいだった「戦略思考」の定義が明確になったことが大きな収穫です。仕事だけでなく、日常生活でも戦略思考を実践していることに気づき、戦略思考がより身近なものだと実感しました。 ゴールはなぜ大事? また、戦略思考の必要要素として、①ゴールの明確化、②道筋の選択、③独自性の3点があると理解しました。特に①については、ゴールを設定するのではなく、そのゴールをより明確にすることが重要だと感じています。どの立場の人にも誤解なく理解してもらえる共通認識のゴールであり、なぜそのゴールなのかを自分自身の言葉で深く考えることが求められると実感しました。 選択肢はどう広がる? ②に関しては、選択肢を多く引き出すことが重要であり、これには自分自身の引き出しが不足していると感じています。従来通りのやり方に頼ってしまい、狭い視野で進めることで手戻りが発生することもあるため、今後はより広範な視点を持ちたいと思いました。 意見伝え方はどう? 加えて、決められた時間内に考えを整理し、他者に伝える難しさも痛感しました。自分の意見をうまくまとめて伝えることが苦手なため、グループワークで他の受講生の方法を学び、少しずつ改善していきたいと考えています。 全体評価はどう? 総評として、戦略思考の各要素を具体例とともに理解し、日常や業務への応用を意識できた点は評価できます。しかし、選択肢の幅を広げるための工夫についてはさらに改善の余地があると感じました。 実務でどう活かす? ゴールの明確化や選択肢の重要性を実体験を通して学べたことは、実務における大きな強みになると感じています。業務現場で共通認識を持つゴールを実現するためには、単語の意味や背景の明確化、定量化や5W1Hの整理といったプロセスが必要だと思います。また、従来のやり方にこだわらず、目的の本質を捉えるために、常に多様な視点を持ち、周囲の意見や過去の失敗から学ぶことが大切だと考えます。 実践にどう繋ぐ? 今後は、戦略思考を実際の業務行動に落とし込み、自己成長へとつなげる体験を積み重ねたいと思います。例えば、運営を担当する経営方針発表会では、単に慣習に従うのではなく、誰がどのような状態になることが理想なのか、参加者の感情や行動に変化が現れるような目的の具体化が必要です。同様に、中長期的な課題に対しても、まずはビジョンを誰もが共通認識できる言葉に言語化することが第一歩だと認識しています。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

リーダーシップ・キャリアビジョン入門

キャリアの未来を拓く4つの理論

講座の狙いは何? 今週の講座では、「代表的なキャリア理論を知る」ことに焦点が当てられました。以下にその内容をまとめます。 キャリアの価値基準は? まず、キャリア・アンカーについてです。これは、エドガー・H・シャイン博士が提唱した理論で、自己分析や他者からのフィードバックを通じて、自分の仕事における価値観を明確にする方法です。キャリア・アンカーには8つの種類があります:特定専門分野、全般管理コンピタンス、自律・独立、保障・安定、起業家的創造性、純粋な挑戦、奉仕および社会貢献、生活様式です。これらを確認する手順として、自己診断やインタビューを行い、それらを考慮してキャリア開発を決定することが推奨されます。この理論は、現在のキャリアや人生の判断基準として役立つ一方で、制約にもなる可能性があります。 生存戦略はどう挑む? 次に、キャリアサバイバルについてです。これは、職務と役割の戦略的プランニングに関する分析手法で、環境変化や複雑な人間関係に対応するために重要です。組織が自分に求めるものを把握し、変化を予測して対応するための計画を立てることが求められます。 今後のリーダー像は? 続いて、これからのマネジャーとしてのあり方です。急速な変化に対応するために、自己変革を継続することが大切とされています。必要なスキルには個人としてのスキル、仕事に必要なスキル、テクニカルスキル(論理思考力、分析力)、ヒューマンスキル(コミュニケーション、巻き込む力)、コンセプチュアルスキル(目標設定、ビジョン設定)などがあります。 指導法はどう使う? 最後に、リーダーシップのスタイルについてです。リーダーシップは、状況や個人の特性に応じて活用の仕方を変えることが重要とされています。具体的には、指示型(具体的な指示を出す)、コーチ型(問いを立て、意見を引き出す)、支援型(働きやすい環境を整える)、委任型(権限を委譲する)のスタイルがあります。 支援策はどう考える? これらの理論を踏まえた上で、チームメンバーのキャリア開発を支援するための具体的な行動として、自己診断や個別インタビューの実施、キャリア開発計画の策定、定期的なフィードバックセッション、環境変化の情報共有、リーダーシップスタイルの適用が挙げられています。これにより、メンバーのキャリア開発を支援し、チーム全体のパフォーマンスを向上させることが目指されています。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

戦略思考入門

戦略思考で挑む現場改革への道

戦略的思考の鍵は? 戦略的思考には、まず「目標を明確に定め、なるべく最短・最速で進めること」、次に「やるべきこととやらないことを取捨選択すること」、そして「他との独自性を持つこと」という3つのポイントがあると学びました。さらに、学んだ内容は単なるキーワードの羅列ではなく、自分に置き換えて教訓や言葉にすることで、確実に自分のものとなると実感しました。戦略的思考を活かすためには、表現力や説得力も重要な要素であると感じています。 採用課題の悩みは? 私の職場では、地方工場における高校生採用と、目標が明確でない採用課題という2つの課題に直面しています。前者は、工場の若返りを目指して高校生の採用という一定の方向性は見えているものの、後者は他社との差別化や効率的な採用課題の解決策が具体的に示されておらず、どこから手を付けてよいのか分からない状況です。 行動計画は見えますか? 今後は、学びを通じて大きな課題に直面した際のアプローチ方法を身につけ、具体的な行動計画が見えている時には、実際に行動に移しながら職場での学びを深めていきたいと考えています。 具体策はどうですか? 具体的な高校生採用の取り組みについては、毎週の定例会議でファシリテーションを担当し、関係者の声を引き出して目標をさらに明確にし、具体的な形にしていくつもりです。その上で、実施すべきアクションを整理し、無駄なく管理しながら進めることで、採用活動全体の効率化を図っていきたいと考えています。また、高校生が求めるものや、わが社の独自性を魅力的にアピールするための材料作りについても、関係者と議論を重ねながら進める方針です。リーダーシップを発揮し、戦略的思考を現場で実践する絶好の機会と捉え、積極的に取り組んでいきます。 他社との差は? 一方、長期的な他社との差別化や効率的な採用課題の解決については、上司の意図を深く掘り下げるとともに、上司だけでなく他の方々の意見も取り入れ、自分なりの考えをしっかりと整理していきたいと思います。目標と共通の課題がなければ、ただ行動するだけでは効果が得られないと痛感しています。 グループワークの効果は? また、グループワークを通して、的確に言語化しまとめる方々がどのような意識で発言しているのか、また皆さんが苦手とする部分をどのように克服しているのかを知ることで、自分自身の成長にも繋げていきたいと考えています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

戦略思考入門

短期間で学びを爆発的に加速する方法

直感に頼り過ぎ? これまで私は、自分の判断を積み上げてきた経験からの「勘」に頼っていました。しかし最近、その限界を感じ、経営戦略やMBAに無関係だと思っていた内容に興味を持ち、受講を決めました。結果として、大満足でした。 振り返りは効果的? 今週は全体の振り返りを行いました。Week00と01に記録した「戦略思考を行うために身につけたい点」のリストは、当初とても表面的だったと感じました。しかし、わずか数週間の学びで、視座が変わったことに自分でも驚いています。 学びが急変した? なぜ短期間に多くの学びと気づきを得られたのかを考えてみると、アウトプット型教育と新たな視点を得られる仕組みがその要因であると思います。アウトプット型の教育では、自分の頭でしっかりと考え、それを言語化することや、グループワークによる口述説明が求められました。また、新たな視点を提供する仕組みとして、スピーディな回答をくれるツールや、動画コンテンツ、実際の経営者の経験談、グループワークでの他者からのコメントなどがありました。 考え抜くのは大変? 一方で、「考え抜く」という行為は体力が必要であると実感しました。これからはフレームワークをツールとして活用し、無駄な時間を省いて効率を高めていきたいと思っています。 組織戦略はどう? 今後のゴール設定としては、自組織が社会に対して果たすべき責任や役割を考え理想の姿を描き、それをゴールに組織戦略やプロジェクトと結びつけることを目指します。また、フレームワークを活用して、盲点を減らし、具体的な戦略を練って提案や意見交換を行えるようにしたいと考えています。 心身の健康を守る? 日常生活では、考え抜く力を保つために心身の健康を維持し、適切な睡眠や運動を心がけます。また、フレームワークを日常に取り入れて考え方に慣れることが重要です。 組織目標は適正? 2025年上期には、これまでの慣例が組織目標に適しているかどうかを日報などを通じて解析し、顧客の成長率をどのように判断できるかを検討します。他社の企業文化を整理し、自社との違いを明確にすることも重要です。 医療環境を考える? さらに、2025年からは少子高齢化による医療環境の変化を考慮し、医療スタッフの減少を見据えつつ、医療機器の開発を進めていきます。グローバルの傾向についても情報を集約し、日本との違いを意識した施策を検討します。

リーダーシップ・キャリアビジョン入門

リーダーに必要な3つの要素を探る

リーダーの要素は何か? 「リーダーとは、~~な人である」の「~~」に当てはまる言葉を考え出すことで、自分がリーダーに必要だと考える要素を言語化することができました。「なぜこの人はリーダーシップがあるのか?」を考察する際、行動、能力、意識の3つの要素に分類してみると、この3つが揃うことが重要であると説明できると感じました。これらの要素は互いに影響し合うものだと考えます。 行動と意識はどう連動する? 行動については、ビジョンを示したり、夢を語ったりするような行動は、「こうしたい」という自分の欲求から引き起こされ、この欲求は「意識」と強く関係しています。能力とは、たとえば決断したり、説得したりするスキルのことですが、これは後から磨くことが可能です。行動を続けることで学び、さらに能力を向上させることができます。さらに、意識が強ければスキルを磨くモチベーションも続き、能力は行動や意識と密接に連動しています。意識とは、たとえば熱心さや明るさ、オープンであること、度量の広さといった特徴を持っていますが、これらは生まれつきのものと思われがちです。しかし、日々の行動を通じて習慣化されるため、行動と強く連動します。 リーダーシップをどう身に付ける? 「どうしたらリーダーシップを身につけられるか?」という相談に対しては、行動、能力、意識の3つの要素を使って解説し、現時点での自分の強みやこれから磨きたい部分を中心に対話ができると思います。また、新しいメンバーとのコミュニケーションにおいては、仕事の目的と完成形を確認する(What)、期限を確認する(When)、方法を考える(How)、そして最適な進め方を対話で引き出すことが重要です。さらにこの仕事を通じて得られる良いことに関しても一緒に話し合い、本人の「Want」を引き出すことが重要ではないかと感じました。このような対話を通じて深い理解と納得を得ることが重要です。 対話の重要性とは? 「頭合わせ」を怠らず、対話によって丁寧に進めることが、効果的なリーダーシップにつながると考えます。そのためには、1対1の対話を必要に応じて定期的に設定することも意識しています。特に新メンバーには、考えを共有し、どこまで理解しているかを確認することが求められます。このようにメンバーに自身の考えを表明し、行動を通じて示していくことが、自らのリーダーシップの深化につながると考えています。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。
AIコーチング導線バナー

「表 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right