データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

クリティカルシンキング入門

問いを深める成長の軌跡

適切な問いはできてる? 今週の演習を通して、適切な問いを立て、課題を正しくとらえることの大切さを再認識しました。論点(イシュー)が明確でなければ、目指すべき解決策や対応策にたどり着くことができないという実感を得ました。 優先課題は何だろう? また、GAILを学ぶ中で、業績の不調に対し原因や解決策が複数の切り口から考えられることを理解しました。優先的に取り組むべき課題を特定することが、最も成果につながるという点も大きな学びでした。 新部署で挑戦はどうなる? さらに、この4月から新たな部署で企画業務を担当する中で、未経験の領域に挑戦していると実感しています。課題設定が得意なメンバーが多い現状において、どのように本質を捉え、どのフレームワークを活用して解決策を導いているのか、今回学んだ内容を自分なりに応用しながら考え方を深めたいと思います。 イシューは見えている? 今後は、各課題に対してその課題が適切か、イシューが明確になっているかをしっかりと確認する習慣をつけるとともに、検討の過程でもイシューがずれていないかをこまめにチェックします。また、課題設定や解決策の提案が得意なメンバーの説明を受け、講義内で学んだフレームワークを活かしながら実例としての学びに変えていきたいと考えています。

データ・アナリティクス入門

複数仮説で戦略を変える瞬間

仮説立てのヒントは? 課題に対して仮説を立てる際は、単に漠然とアイデアを出すのではなく、4Pや3Cといったフレームワークを活用することで、課題を整理して考える助けになると実感しています。また、具体的な問題解決に向けては、何が問題なのかという複数の仮説を立て、「どこに、なぜ、どうすべきか」という各段階を順に確認することで、より深く掘り下げた対策を見出しやすくなると考えています。 戦略の裏側は? 自身の業務を振り返ると、これまでは業務課題に対して仮説を立て、深堀りして解決策を導くというプロセスが不足していたと感じています。課題を分解して深く検討するステップを踏まず、思いついた打ち手に頼ることが多かったと思います。今回の学びを通じて、今後は課題に対して複数の仮説を立て、どの対策を実行するのが最適かを十分に検討する習慣を身につけ、より深い洞察に基づいた戦略立案を目指したいと考えています。 次は何を選ぶ? さらに、解決すべき課題に対して複数の仮説を立て、それぞれの対策を検討し、最終的に比較検討して選択する業務の流れが重要だと認識しました。今後、事業戦略の立案を進める中では、仮説立てや深掘り、そして対策の選択というステップを必ず踏むことで、より質の高い戦略を策定していきたいと思います。

クリティカルシンキング入門

仮説検証で広がる学び

イシューはどう特定? イシューの特定は容易ではなく、常に分解を行わなければ混乱に陥りやすいと感じています。常に「イシューとは何か」を意識し、その切り口となる仮説を用意しつつ、多角的に検証する必要があります。実際、以前は思い込みで打ち手を考えていたときに比べ、約30倍もの時間を必要とすることを実感しました。 打ち手は何が有効? クライアントの現状に対し、どの打ち手が有効かを検討する際、これまで見慣れたSNSや特定のプラットフォームだけに頼るのではなく、リアルな情報も加味しながら、あらゆる角度からイシューを特定する重要性を改めて認識しました。 仮説の検証はどう? イシュー特定のためには、直感に頼らず、常に仮説を立てた上でデータを分析することが欠かせません。仮説の検証が十分に進まない場合は、別の仮説を設定し、さまざまな視点から考察する習慣を身につけることが大切だと感じています。 構造再考はどうすか? 自身の業務に照らし合わせると、クライアントの課題特定についてはまだ不十分だと感じました。ピラミッドストラクチャーを用いた際に根拠が不安定になる場合は、根拠を補足するための情報を集める必要があるか、もしくは一度構造を解体して再考する選択肢も考えるべきだと思います。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

クリティカルシンキング入門

データ分解で見つけた次の一手

「分かる」とはどういうこと? 「分かる」とは、分けていくことの手段だという言葉が印象的でした。傾向が見えないことは失敗ではなく、傾向が見えないことが分かるのです。分けることに迷うなら、まず分けてみるという考え方も心に響きました。 データ視覚化の重要性とは? また、データに対してひと手間を加えることや視覚化の重要性についても学びました。以下のポイントが特に役立ちました。 1. 全体を定義する。 2. モレなく、ダブりなく切り分けるために、年齢や時間といった目的に合った切り口に分ける。 3. 分解する切り口には、層別分解、変数分解、プロセス分解の3つがある。 データ選定の再考は必要? さらに、自社をPRする際のデータの選定について考える際、以下の点が参考になりました。例えば、現状のパンフレットには「メディアで取り上げられた回数」を掲載していますが、そのデータがステークホルダーが欲しているデータかどうか、他に適したデータがないかを再検討することも重要です。 パンフレット制作におけるデータ活用法は? パンフレット制作業務においても、現状データの選定理由を整理し、ステークホルダーが関心を持つデータを選定したうえで、様々な切り口でデータを分解することが求められます。

戦略思考入門

異業界でも活きる戦略思考の力

どんな戦略を学んだ? 戦略思考に関するグループワークのディスカッションで、異なる業界でも共通する事象に対してフレームワークをどのように活用するかの具体的なアクションについて学び、大変有意義でした。 3C支援はどうする? 特に3Cを用いて、自分と他人、環境を考慮したキャリア自律支援サポート方法が有効だと感じました。そこで、新入社員や2年目の社員向けにこれを展開していきたいと思います。また、年間で約100人の中途入社者向けにも、シンプルなフレームワークを活用した研修を組み込む案を検討しています。 不要業務はどう整理? さらに、「捨てる」という考え方にあまり意識を向けていなかったため、優先順位を設定する際には限られたリソース内で取り組むべきことが何かを考え、不要な業務を整理する機会を定期的に設けたいと思います。 SWOT提案はどう? また、SWOT分析と3Cは仕事の中で非常に有効だと思うので、クライアント向けの提案を考える際にSWOT分析の機会を設けたいと考えています。加えて、キャリア自律支援を促進するために、3Cを使ったワークを来年以降の研修で提供していく予定です。そして、四半期に一度、やることと同時にやめることを決定する振り返り会も実施する予定です。

データ・アナリティクス入門

実データが照らす理想への道

ギャップをどう埋める? 分析の中で、あるべき姿と今後ありたい姿を明確に描き、そのギャップをどう埋めていくかという点がとても印象に残りました。売上の分析においては、MECEの考え方が非常に参考になったと感じています。実際、売上を「その他」の部分として約4割以上扱う状況で、金額ベースでロングテールの顧客層をどう検討するかが難しい課題として浮上しています。また、これまで頭の中だけで簡単に考えていた層別・変数分解も、紙に整理してじっくり考える重要性を再認識させられました。 実データはどう活かす? 現在の業務では、担当エリアにおけるエリアマーケティングをはじめ、受注・売上・在庫の計画立案とその差異の分析、さらに5年後を見据えた将来の計画の策定に取り組んでいます。顧客は代理店経由ですが、代理店の先に多様な顧客層が存在するため、その実績や市況感を的確に把握することが求められます。そこで、代理店から得られる販売実績とインタビュー内容をもとに、実態とのギャップを層別変数分解によって明確化し、これまでの勘に頼る計画立案から、実データを活用した計画への転換を図っていこうと考えています。特に顧客層の分類には重点を置き、時間をかけてしっかりと取り組んでいきたいと思います。

データ・アナリティクス入門

問題解決のカギは5W1H!経営改革の実践例

学習で得たポイントは? 今週の学習で得たポイントは以下の3点です。まず、①問題解決プロセスにおいては5W1Hの発想が重要です。しかし、解決手段の「How」から始めるのではなく、まずは「5W」に注目し、原因となる部分を特定します。②原因特定の際にはMECEな考え方を意識します。MECEを厳密に運用する必要はありませんが、「その他」の選択肢も含め、原因を絞り込むことが大切です。③「ありたき姿」と現実のギャップを定量的に捉え、それを解決手段である「How」に落とし込み、具体的なアクションにつなげます。 活動方針策定のヒント 来期の活動方針を策定する際には、経営目標と現状を数字で表し、「ありたき姿」と「現状」のギャップを可視化します。これにより課題となる分野を明確化し、それに関係する業務や部署を特定し、解決手段の立案に役立つと感じました。 ギャップ分析の重要性とは? 今期の経営目標と現在までの途中経過をデータで可視化し、それを業務や担当部署別に落とし込みます。そして、「ありたき姿」と「現状」のギャップが大きい部署を洗い出します。ギャップについて各部の担当者とディスカッションを行い、来期の目標設定において課題解決方法とその定量化を検討します。

デザイン思考入門

共感プロセスで見えた本質

デザイン思考はどう働く? 私は、自社の業務効率や生産性を向上させるために、デザイン思考のアプローチを取り入れようとしています。施策を検討する際、共感は非常に重要なステップであり、実際、経験や知識のない分野でも観察やヒアリングを通じてエンドユーザーの立場から業務を理解することが、より適切な対策を生み出す基盤になると考えています。 急ぎすぎるリスクは何? ただし、私の事例では、エンドユーザーが既に理解している業務の振り返りにとどまってしまい、次の具体的な検討段階へ早く進んでしまう危険性を感じています。そこで、共感プロセスをしっかり進めるためには、エンドユーザー自身にも共感の重要性を認識してもらい、具体的なメリット(例えば、既存業務の棚卸しなど)を実感させる工夫が必要だと思いました。 なぜ事前準備が必要? また、観察やヒアリングを通じてユーザーの深層ニーズや課題を把握することは、デザイン思考の基盤を築くうえで欠かせないプロセスです。しかし、単に行動を追うだけであれば表面的な理解にとどまる危険があるため、事前の情報収集と明確な問いの設定が重要であると考えています。今後のコース受講を通じて、その下準備の進め方についてさらにヒントを得たいと思います。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

データ・アナリティクス入門

問題解明の鍵は日常にあり

現状と理想の差は? 問題を明確にするため、ロジックツリーの活用法を学びました。あるべき姿やありたい姿と現状とのギャップに着目し、そのギャップがなぜ生まれているのかを問うことで、原因の特定につなげられると感じました。原因分析の手段としてMICEを意識し、問題を分解する取り組みが、より具体的な問題の明確化につながると思います。 MICEの見方は? 一方、MICEの視点で考えることはすぐには難しいと感じたため、日頃からの訓練が重要だと再認識しました。例えば、夕飯のメニュー選びにおいて、中華、和食、洋食といった大分類の中で、麺類や主食といった細かなカテゴリーに分けて考えるといった方法を試してみようと思います。 予算獲得の鍵は? また、予算獲得に向けては、各業務におけるあるべき姿を明文化し、メンバーと共有することが不可欠です。現状とのギャップやその原因についてMICEを用いて検討することで、新たな発見や打ち手が見えてくると感じます。さらに、あるべき姿を明確にするために、会議を通して現状のユーザーの声や法的根拠を把握し、理想と現実の差をしっかりと捉えることで、あいまいな課題の解消につながり、全体のストレス軽減にも寄与すると思います。

「業務 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right