データ・アナリティクス入門

MECEで切り拓く論理の未来

MECEと分解のポイントは? MECEの手法を通して、漏れなく重複のない考え方の重要性を学びました。また、ロジックツリーを用いることで物事を分解して考える方法にも触れました。ただし、細かく分解しすぎるのではなく、適度な粒度で整理することがちょうどよいと感じました。 製品サポートはどう変わる? 個人的な感覚に頼るのではなく、フレームワークを活用することで、よりロジカルかつ具体的に意見を伝えることができると思います。私の担当している製品サポート業務では、お客様からの問い合わせ対応や内部連携の課題があるため、業務をさらに整理して取り組む必要があると感じました。 課題解決のヒントは? 今後は、ロジックツリーを活用して課題を分解し、詳細に洗い出してみます。さらに、MECEの観点から整理されているかを再確認し、どこに課題があるのかを特定した上で、具体的な解決策を検討していく予定です。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

デザイン思考入門

アイデアの種が芽吹く瞬間

ブレインストーミングはどう? ブレインストーミングは、取り組みやすい手法だと感じました。個人でも実践できるとのことで、日々の業務のなかから一つ以上の要素を抽出し、それに対して自分なりの改善点をたくさん考えてみることができそうだと思いました。 SCAMPER法はどう? また、実践演習ではSCAMPER法を用い、普段意識しない視点から物事を考える機会が得られました。十分に洗練された状態のものに対しても、「もっと削れないか」や「代わるアイデアはないか」といった異なる視点から検討することで、さらに良い結果が生まれる可能性を実感しました。 どうやって大量発想する? 単純なアイデア出しであっても、やみくもに考えるのではなく、さまざまな手法があることを学びました。いずれにしても、最初はアイデアの量を重視し、まずはたくさんの考えを出すことに専念しようと思います。

アカウンティング入門

原価率から学ぶカフェ経営の知恵

価格と原価の関係はどうなってる? 原材料が高価でなくとも、販売価格が低い場合、原価率が高くなる可能性があることを学びました。特に、アキコのカフェではこのことが当てはまりました。また、限られた情報の中で損益計算書やバランスシートを使い、企業の経営状態を読み解くのは難しいと感じました。 経営戦略の理解はどう進む? 時間がある時には、同業他社や他業種の損益計算書、バランスシート、IR情報を調べ、その経営戦略を理解することを心がけています。他社から得た知識を、自社や自分の業務に活用することで、仕事の質を向上させることが目的です。 同規模企業と何が違う? また、財務諸表を分析する際は、まず業界トップの企業を確認し、その後、自社や同規模の企業と比較して違いを探ります。そして、その中から参考にできそうな経営戦略を自身の業務や部署に活かす方法を検討しています。

データ・アナリティクス入門

仮説思考が拓く成長の扉

仮説思考はどう活かす? 講座を通じて、仮説思考の重要性を再認識しました。仮説思考を持つことで、日々の業務やビジネスにおいて、身近なヒントに気づきやすくなり、柔軟な発想ができるようになりました。 原因分析のポイントは? また、原因分析においてはMECEの考え方や、3Cや4Pといったフレームワークを活用する手法を学びました。一つの仮説に固執せず、多角的な視点から原因を検討することで、初めの仮説を超える重要な要因や、否定すべき可能性に気づくことができると実感しました。 再発防止策はどうする? さらに、仮説思考を実践する中で、一点に執着せず常に広い視点で多くの仮説や原因を想定することが、トラブル対応や再発防止策の検討において非常に役立つと感じています。原因の究明を意識しながら、適切な再発防止策を講座で学んだ知識を活かしていきたいと考えています。

クリティカルシンキング入門

疑問をチャンスに変えた日々

課題洗い出しはどうする? 業務課題に取り組む際は、まず課題となるイシューを漏れなく洗い出すことが基本です。各イシューは疑問形で具体的に問いかけることで、本当に解決すべき問題が明確になります。また、一面的な経験則に頼らず、多角的な視点から解決策を検討することが求められます。特に、最初に手を付けるべき課題を明確に優先順位を付けることで、効率的な対応が可能となります。 伝え方と相談対応はどう? 顧客からの相談や業務上の課題に対しては、これまで学んだ正しい日本語の使い方や伝え方、そして図や表を活用したイメージしやすいドキュメント作成の技法を積極的に活用しています。各課題を順番に処理するのではなく、優先度を意識しながら対応すること、さらに対策を立てる際には自身の経験に引きずられず、必要に応じて他者の意見も積極的に取り入れている点が大きな特徴です。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

多角的視点で広がる学びの力

切り口の多様性は必要? 切り口が一つだけだと、偏った答えになる可能性があることがわかりました。しかし、複数の切り口を見つけるのは難しいとも感じました。自分が導きたい答えを得るために切り口を模索するという方法もあるのでは、と考えました。 実務での発見と応用 実務では、複数の業務を同時に行っているため、チームの弱点や強みを発見することに役立つと思います。今年の自分の目標の達成にも、多角的な視点での分析が重要だと考えています。 マインドの数値化は可能か? 昨年一年をかけて取り組んだプロジェクトでは、マインドを数値化するのは難しいと感じていました。しかし、異なる切り口を探して、数値化が可能でないか再考したいと思います。現在数値化されている部分についても、他の切り口がないか再検討し続けたいと考えています。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

「業務 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right