データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

クリティカルシンキング入門

問いの力で広がる学びの未来

問いをどう理解する? 「問いを立てる」という言葉について、普段の言い回しとは異なり、初めはピンと来なかったものの、ライブ授業の具体例を通じて理解が深まりました。YESかNOで答えられる問いを設定することで、その答えに対する論拠や分析が求められ、論理的な説明が自然と身につくと実感しています。これまでの日々の業務にも通じる部分があり、改めてその意義を認識することができました。 フレームワークの再確認は? また、これまでシステム開発の現場で漠然と使っていた思考のフレームワークが、今回の学習を通じて再確認できた点も大きな収穫です。部署内で複数のシステム開発案件のレビューを行った際に、報告内容が論理的でない場面に直面することがあり、状況を整理するためにこのフレームワークを意識的に活用できそうだと感じました。さらに、事業計画の立案や部下のサポートにも、今までの経験にとらわれない新たな視点を加える上で大いに役立ちそうです。 イシューリストをどう見る? ライブ講義で紹介されたイシューリストの作成方法も非常に印象的でした。日常業務では緊急度の高いものが優先され、本来注目すべき課題が見落とされがちですが、イシューリストを作成し定期的に見直すことで、重要な問題点を把握し、対処策を検討する体制を整えられると感じました。

マーケティング入門

顧客の声が輝く学びのヒント

なぜ顧客目線で考える? 私自身、まずは顧客の視点で物事を考える習慣を身に着けることが最初の一歩であると実感しました。マーケティングにおいては、「自社の良さを伝えること」と「相手がその魅力を感じ取ること」、この両輪をバランスよく回すことが重要です。何かを売ったりPRしたりする際に、つい自分目線になりがちですが、まずは相手を深く理解する力や、相手の立場に立って考える力の育成が必要であると学びました。 高校生への認知をどう広げる? また、私の業務は顧客である高校生との接触機会を創出し、魅力発信を通じて認知度を高めることにあります。そのため、特設サイトやパンフレットなどの広報媒体の制作、WEB広告やダイレクトメール(DM)等の検討と実施、さらにはオープンキャンパスなどのイベント企画など、さまざまな場面で学びを活かしていきたいと考えています。 市場環境をどう捉える? 具体的には、まず高校生のトレンドやニーズを捉えるため、SNSやテレビ、新聞といった多様なメディアからの情報収集を行います。さらに、昨年度までの受講者を中心にヒアリングを実施し、生の声を業務に反映させることが大切だと感じています。加えて、公式サイトやSNSを通じて競合校の動向を把握し、全体の市場環境を理解することも欠かせません。

戦略思考入門

差別化戦略で営業力を高める方法

戦略軸とVRIOはどうする? 差別化戦略を考える際の集中、差別化、コストリーダーシップといった軸について、以前はあまり意識していませんでした。今後はこれらの軸をしっかりと意識し、無駄のないよう整理しながら戦略を進めていきたいと思っています。また、VRIO分析では、経済価値、希少性、模倣困難性、優位性の観点から施策やサービスの妥当性を精査するということを初めて知り、今後の検討に際してこの軸を用いてしっかりと分析を行っていきたいと考えています。 差別化戦略はどう進める? 現在の業務においては差別化戦略を活用する機会が少ないと感じていますが、自分自身の立ち位置を社内で高めるには、特定の分野に集中して取り組むことが役立つのではないかと考えました。また、営業向けの研修を多く行っている中で、クライアント向けに提案や戦略を考える際、このVRIOフレームワークを活用することで、より価値の高い提案が可能になると感じています。ぜひ試してみたいと思います。 商談研修はどう見直す? 現在、商談のための営業研修プログラムの見直しを進めています。商談での提案内容を考える際に、クライアントに対してどの施策がVRIOフレームで見て価値があるものかをきちんと検証できるようなステップを組み入れていきたいと考えています。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

クリティカルシンキング入門

仲間と発見!真のイシュー追求

本当に大切な課題は? 真の課題やイシューを見極め、明確にすることは非常に重要です。仲間と情報を共有することで、目指す解決策が正しいかどうかを共に認識し、より確かな道筋を描くことができます。また、「分けるとわかる」という考え方に基づき、どのような分析手法が解決策を導き出すのか、様々な角度から現状を整理する意識を持つことが求められます。 多角的視点は足りる? 業務を進める上では、営業成績や人事、商品開発など多岐にわたる課題が発生します。そのたびにイシューを設定し、複数の視点から分析を進めるとともに、対策を講じる必要があります。特に、情報が不足している場合には、十分な情報収集を行うことが不可欠です。 全体最適を考えてる? また、イシューを決定する際には、部分的な解決策に偏ることなく、全体最適の観点から何が真のイシューなのかを慎重に考えることが大切です。そのためには、複数(最低でも3つ以上)の仮説を立てた上で、最も本質的なイシューを見極めることが求められます。 代替案は整ってる? さらに、様々な角度から現状を分析し、対策案を検討する際には、必ず代替案も用意するようにしましょう。クリティカルシンキングの姿勢で、本当にその対策が妥当であるのか、常に問い続けることが成果に繋がります。

クリティカルシンキング入門

問いを深める成長の軌跡

適切な問いはできてる? 今週の演習を通して、適切な問いを立て、課題を正しくとらえることの大切さを再認識しました。論点(イシュー)が明確でなければ、目指すべき解決策や対応策にたどり着くことができないという実感を得ました。 優先課題は何だろう? また、GAILを学ぶ中で、業績の不調に対し原因や解決策が複数の切り口から考えられることを理解しました。優先的に取り組むべき課題を特定することが、最も成果につながるという点も大きな学びでした。 新部署で挑戦はどうなる? さらに、この4月から新たな部署で企画業務を担当する中で、未経験の領域に挑戦していると実感しています。課題設定が得意なメンバーが多い現状において、どのように本質を捉え、どのフレームワークを活用して解決策を導いているのか、今回学んだ内容を自分なりに応用しながら考え方を深めたいと思います。 イシューは見えている? 今後は、各課題に対してその課題が適切か、イシューが明確になっているかをしっかりと確認する習慣をつけるとともに、検討の過程でもイシューがずれていないかをこまめにチェックします。また、課題設定や解決策の提案が得意なメンバーの説明を受け、講義内で学んだフレームワークを活かしながら実例としての学びに変えていきたいと考えています。

マーケティング入門

多角的な視点で拓くマーケティング

想定外の購買層は? 動画内で示された完全メシの主要な購買層が、自分が想定していたものとわずかに異なっていたことに気付きました。当初は20代~30代の男性をイメージしていましたが、ユーザーは多面的に存在するという事実を再認識する機会となりました。身近な事例を通じて購買者のペルソナを描くなど、複数の視点から自分の思考を見直す習慣を身につけたいと思いました。 マーケ思考の整理は? これまでマーケティングに関する業務は実践してきたものの、言語化して検討する機会はあまりありませんでした。今回、体系的に学ぶことで自身の頭の整理が進むとともに、今後の部下の指導にも大いに役立つと感じています。感性は個人で磨くしかありませんが、マーケティング視点の取り入れは誰にでも可能であるため、今後のチームの課題として積極的に取り入れていきたいと考えています。 企画評価の工夫は? また、企画を総評する際に、感性に基づく判断や好みが優先されがちであるという指摘について、現場から上がってきた企画の機能的価値と情緒的価値を分析し、伝えるためや売るために必要な要素を誰もが理解できる形で可視化・共有することが重要だと感じました。このアプローチを会議などでも取り入れることで、チームの総合力向上につながると期待しています。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

「業務 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right