クリティカルシンキング入門

文章作成の質を高める10のポイント

文章はどう磨く? 文章の書き方について、多くのことを学びました。主語と述語がきちんと対応するように文章を組み立てたり、一文を短く分けたりすることで、文章がより明瞭になります。さらに、理由を論理的に深掘りし、客観的な数字を用いることで説得力を高めることも理解しました。 レポート作成の秘訣は? 各種レポートを作成する際には、論理的に伝えることが欠かせません。先に挙げたような文章の書き方のポイントは、相手を動かすための重要なスキルとなります。また、私は日常的に議事録を作成しており、最近ではChatGPTを使って自動作成されることも多いですが、その際にも学んだことを活用して手直しをしています。 チェックは十分? これらの学びをもとに、新たに文章のチェックリストを作成しました。レポートや議事録を作成した後、そのチェックリストに基づき確認を行うことで、文章の質を向上させたいと考えています。さらに、会議で意見を述べる際には、事前にメモを用意し、相手の理解度や状況に応じた言葉選びと流れを意識するよう努めています。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

クリティカルシンキング入門

振り返りから学ぶ分析力の磨き方

比率とロジックツリーの活用方法 ある事象の分析に際して、比率を用いて深く調査でき、その後、ロジックツリーを活用してさらに詳細に研究することができました。特に重要だと感じたのは、表を作成することで、多角的な視点から情報を確認できる点です。この学びを生かし、今後も正しい方向性を考え、さらなる学びを続けたいと思います。 相続関連業務の需要とは? 新たな業務提携企画にこの知見を活用していく予定です。相続関連業務、例えば相続対策や事業承継の分野では、外部環境の分析や需要の増加が求められるようになっています。また、遺言に対する顧客の抵抗も減少傾向にあります。ある程度のマニュアルを作成し、それを分かりやすくまとめることが目標です。 新業務企画の進捗はどこまで? 新業務企画の大枠を設定し、ロジックツリーを描きながら不足部分を補完する試行錯誤を繰り返しています。今週中に新しい業務企画の合意書を完成させたいと思います。また、複数の表を作成し分析を行い、MECE(もれなく、ダブりなく)の原則を心がけて日々取り組んでいきます。

マーケティング入門

ペインとゲインで変わる!売上促進の新戦略

顧客ニーズの捉え方は? 顧客の真のニーズを捉える具体的な方法を学びましたが、それにはコストや手間がかかるデプスインタビューのような方法も含まれます。したがって、状況に応じて多様な手法を用意しておくことが重要であると認識しました。 ペインとゲインの重要性を考える これまで、自社商品のニーズについて考える機会は多くありましたが、ペインポイントについて考えることはあまりありませんでした。商品が抱えるペインポイントと、提供する価値であるゲインポイントを言語化することで、新しい販売施策のアイデアが生まれる可能性があります。また、それは広告や宣伝においても、新たな視点から消費者に訴求するメッセージを出せるようになるだろうと感じました。 次のステップは何にする? 今後のアクションとして、自社商品のペインポイントとゲインポイントをすべて書き出し、部署のメンバーからフィードバックをもらって完成させていきます。そのアウトプットを基に、最低でも一つの販売施策のアイディアを考え、具体化するための行動を始めるつもりです。

デザイン思考入門

生成Aiが描く共感と挑戦の軌跡

画像作成に何が隠れている? 生成Aiの活用については、以前から会社内でも取り組んでいましたが、特に画像作成にAiを利用している点に驚きを覚えました。これまで画像のパターン作成には挑戦しておらず、今回の機会にぜひ活用してみたいと思います。無料のChat GPTだけでなく、有料版のChat Aiも試していく予定です。 在宅営業で何が難しい? また、エデュケーションチームで営業人材育成のリーダーを務めている中で、対象者を顧客と捉え、その顧客の課題をチーム内でデザイン思考に基づいて解決策を模索する取り組みを始めています。しかし、在宅での営業が多いことから、共感をどのように構築するかが課題となっています。 出社で得る発見は? さらに、4月から週に1回の出社が義務付けられることになったため、出社時には主に営業担当者に対して、共感や観察を丁寧に行っていくつもりです。営業活動中のPCの挙動を、許可を得た上で動画に収め、チームで検証することで新たな課題が浮かび上がるのではないかと試してみたいと考えています。

マーケティング入門

顧客視点で切り拓く戦略

価値再定義の鍵は? セグメンテーションと自社のポジショニングについて整理する中で、両者を結びつけることが自社の価値を再定義する鍵になるのではないかと感じました。ターゲティングは市場を狭めすぎる印象があり、しっくりこない部分がありましたが、お客さまをどのようにとらえるかという視点からの6Rという切り口は非常に参考になりました。 差別化はどう可能? 取り扱う商品は極めて均質化されており、競合も多いため、セグメンテーションや自社のポジショニングだけではなかなか競合との差別化が困難です。しかし、自社のリソースや価値設定を見直すことで、従来のポジショニングに新たな価値を加えられる可能性があると感じました。 どこでどう戦う? お客さまの本質を理解しながら、自社のリソースと価値を再評価することが重要です。その上で、市場のセグメンテーションをヒートマップのように捉え、どの部分でどう戦うかを考えていく必要があると思います。まずは、改めてお客さまと自社について深く掘り下げることから始めたいと考えています。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

リーダーシップ・キャリアビジョン入門

未来のリーダー像を描く学びの旅

理想のリーダー像とは? どのようなリーダーになりたいかを考えることで、学びに対する意欲が高まり、これからの学習が待ち遠しく感じられるようになりました。さらに、漠然としていたリーダー像を明確にすることで、現在の自分との差も明らかになり、そのギャップを埋めるための学びが次週以降にできることを期待しています。 自己貢献の観察方法は? 自分が組織に対してどのように貢献しているのか、行動・能力・意識の各要素に注目して観察したいと考えました。現状では、行動と意識に比重がかかっている一方で、能力がまだ十分でないと感じています。1週間の観察を通じて、この考え方に変化があるかどうかを確認してみたいと思います。 新たな発想を得るには? また、この3つの要素を意識することで、どのように考え方が変わり、どのような行動を取ろうと考えるのかを見てみたいと思います。計画を立てる前に、これらを意識することで新たに生まれる発想にも興味があります。これが、来週以降の学びを基にした行動計画のブレインストーミングに繋がると考えています。

クリティカルシンキング入門

知識から実践へ―反省が未来を創る

知識と実践のギャップは? グロービスの学習では、毎週のミニレポート作成を通して「知っている」と「使える」の違いを実感しました。ライブ授業の中で問われた際、インプットしたはずの内容がすぐには出てこなかったこともあり、知識を業務で実際に使うためには、継続的な反復練習や学んだことを意識的に活用する機会を作ることが重要だと感じています。 社内評価はどう変わる? また、社内のモチベーションサーベイの分析業務についても、これまで数値の比較に終始していた自分のアプローチを見直す機会となりました。今回、ライブ授業で学んだ分析のステップを業務に取り入れることを決意しました。 分析の手順は何? 具体的には、まず分析の目的を明確にするために問いを立て、その問いを共有することが大切であると認識しています。次に、情報を工夫し、必要に応じて新たな列を追加したり、割合を算出したり、データの並び替えを行います。最後に、グラフへと視覚化することで、数値だけでは見えにくかった情報を一目で把握できるようにする工夫を実践していきます。

データ・アナリティクス入門

仮説実験で見える成果への道

ABテストの教訓は何? ABテストで学んだことは、仮説を検証する際に検証対象以外の要素はできるだけ固定することの重要性です。過去には、時期的な要素を十分に考慮せずに振り返りを行った結果、どの部分が効果につながったのかが不明確になった経験があり、今後はこの点に注意していきたいと考えています。 クリエイティブはどう検証? また、クリエイティブの検証においては、検証項目以外の要素が多いため、何を検証するのか、どの要素を変更するのかを明確にする必要性を実感しました。これにより、取り組む際の焦点が定まり、より効果的な結果が得られると考えています。 実施方法はどう評価? 具体的には、広告動画の検証でストーリーの流れはほぼ同じに保ちつつ、一部の要素だけを変更する手法を採用しました。さらに、同じ期間で配信を行い、得られた結果を比較検証することで、効果が認められたものを今後の施策に活かす予定です。 新たな仮説は何から? 今後は、別の項目についても新たな仮説を立て、同様のテストフローを構築していく計画です。

データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

データ・アナリティクス入門

ロジックツリーで問題解決の新視点を発見

ロジックツリーはなぜ必要? ロジックツリーの作り方について、層別分解と変数分解の二つの手法があることを学びました。それぞれの方法は、分析したいデータに応じて使い分けることが重要だと考えます。一般的には、MECEの概念に基づいて、漏れなく重複なくと考えがちですが、実際には問題特定や新たな発見を目的として、意味のある分類ができるように、様々な視点を持つことが重要だと感じました。 層別分解の効果は? あるプロジェクトでは、問題を特定する必要があるため、ロジックツリーを用いた層別分解によって、MECEを念頭に置きながら、どのような層別にするかを考え、問題特定や意味ある分類を目指したいと思います。 ギャップ埋めはどうする? まず、理想的な状態と現状の間にあるギャップを洗い出し、ロジックツリーの層別分解に当てはめることで、多角的な視点から分析を行いたいと考えています。そして、さまざまな層別で詳細に分解し、問題箇所を特定し、そのギャップをどのように埋めていくかについての提案を資料としてまとめたいと思います。

「新た」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right