データ・アナリティクス入門

フレームワークで広がる思考の旅

フレームワークで何を学んだ? 3C分析や4P分析といったフレームワークを活用しながら、視点を切り替えて仮説を立てる手法を学びました。これにより、論理的に整理された思考の進め方が身につき、より多角的な分析が可能になると感じました。 複数仮説はどう考える? また、仮説を立てる際には、複数の仮説を同時に考えることや、網羅性を持たせることの重要性を再認識しました。一つの仮説に固執せず、様々な可能性を検討することで、より精度の高い分析が行えると実感しました。 データ収集はどう進める? さらに、データ収集に関しては、既存のデータを活用するパターンと新たにデータを取得するパターンがあることを学びました。新しい情報を得るために必ずしも新たなデータの取得が必要なわけではなく、まずは既存のデータを精査し、そこから仮説を考えることも十分に有効であると理解できました。 次はどう活かす? 以上の学びを踏まえ、フレームワークの理解をさらに深め、網羅性をもって複数の仮説を立てられるように努めるとともに、まずは既存データの見直しから取り組んでいきたいと考えています。

マーケティング入門

顧客志向の新たな価値創造に挑戦

顧客志向の重要性を再確認 マーケティングにおいては、何よりも顧客志向が重要であることを改めて学びました。「売れる仕組みを作ること」がマーケティングの定義とされていますが、その根底にあるのは顧客の存在です。すなわち、自社の商品を単に知ってもらうだけでなく、その魅力を感じてもらうことが重要です。 社員満足度向上の方法とは? 自社のサービスを将来的に営業や外部収益に結びつけるために活用するのはもちろんのこと、顧客を社内外のメンバーやステークホルダー全員と捉えることによって、課やオフィスの従業員満足度を高めることにもつながるのではないかと考えます。 全ての人を顧客と捉える意味 自分に関わるすべての人を「顧客」として捉え、その方々に満足していただくためには何が必要かを考えることが大切です。そのためには、その人たちのニーズを正しく把握し、偏った考えに陥らないよう、広い視野や様々な視点、そして高い視座を持って物事を捉えることを意識したいと思います。そして、そのニーズに応える、あるいはそれを上回るサービスを提供できるスキルを磨くことを心掛けたいです。

リーダーシップ・キャリアビジョン入門

理論で紐解くやる気の秘密

どんな理論を学んだ? モチベーションとインセンティブの関係について、さまざまな理論を学ぶことができました。マズローの欲求5段階説やX理論・Y理論、動機付け・衛生理論といった基礎的な考え方を通して、考察の切り口が広がったと実感しています。 評価基準はどう変わる? また、モチベーションの高低やインセンティブとして感じる基準は、個々の価値観だけでなく、周囲の状況や環境によっても大きく変化することを再認識しました。常に変動するものとして捉え、その変化をより良いものに導く試みが成長に繋がると考えています。 納得感はどう得る? 新しい業務の指示に対して納得感を持って取り組めない場合もあるため、そうしたメンバーのモチベーションやインセンティブについて理解を深めることが大切だと感じました。まずは相手の考えに寄り添い、その視点を理解しようとする姿勢が、納得感の醸成に寄与すると思います。 視点の変化は何? 現時点で分かっているメンバーであっても、今回学んだフレームワークを活用し、異なる視点から検証することで新たな一面が見えてくることに期待しています。

データ・アナリティクス入門

目的意識と比較で開く新たな発見

目的意識はどこに? まず、分析の目的を考えることが当たり前だと感じられるかもしれませんが、私にとっては大きな気づきでした。これまで、データを可視化すれば自然と新しい発見や傾向が見えてくると漠然と思い込んでいました。しかし、まず「何のために」分析をするのかという目的意識がなければ、求める結果は得られないということに気づかされ、仕事への取り組み方が変わると感じました。 比較の意義は? また、分析=データの可視化というイメージだけでなく、その基本は「比較」にあるという新たな発見もありました。具体的な比較対象や基準を設定することで、意思決定がしやすくなります。たとえば、安全衛生に関するタスクでは、法令遵守の状態を確認するために法規制と社内ルールを比較し、どのレベルで何を行うべきかを整理する必要があります。 方法はどうする? 今後は、具体的な方法はまだ模索中ですが、「目的」と「比較」を意識し、どのような結果を得たいのかを明確にしながら取り組んでいきたいと思います。仕事に迷いが生じたときや上司への説明・説得が必要な時に、この考え方を生かしていきます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

データ・アナリティクス入門

思考プロセスで本質に迫る

プロセスの意味は? 今週は、一連の思考プロセスに沿って問題解決のステップを学びました。それぞれのステップで重要な点を復習する機会をいただき、事象を把握する際に、すぐに手法に飛びつくのではなく、しっかりとプロセスを踏むことが実は近道であると実感しました。迅速に本質へ近づくため、その手間を惜しまない姿勢を大切にしたいと感じています。 徹底の課題は? また、問題解決策にたどり着き「これを徹底しよう」と意気込んだ場面でも、大規模な職場においては徹底が困難であるという新たな課題に直面しました。この単科で学んだ内容を活かすためには、その後の徹底方法、すなわちどのようにして人が動くのかという視点も欠かせないと考えています。思考プロセスは数字の分析だけでなく、さまざまな状況に応用できる点が魅力的だと改めて感じました。 本質を追うには? 徹底ができていない現状(What)に対して、なぜ徹底できないのか(Why)をインタビューなどを通して探ることで、新たな気づきを得たいと思います。今後も、この思考プロセスを駆使し、問題の本質を追究していきたいと考えています。

戦略思考入門

コモディティ化を超える戦略発見旅

フレームワークの役割は? 自社のサービスや商品の特性を明確にし、理解を促進するためのフレームワークを学ぶことができました。特に、習熟効果があるポイントを超えると、競争相手とのコスト差がなくなり、差別化が難しくなって事業が行き詰まるという点については、自社の事業にもいずれ該当するリスクがあると感じています。 競争優位性をどう維持する? 製品がコモディティ化してしまうと、技術の優位性やコスト削減の努力が事業の成長につながらなくなることを実感しました。そのため、さらなる競争優位性を持つためのポイントを見つけるか、新たな事業を立ち上げる必要があると考えられます。こうした重要な局面で、この講座で学んだフレームワークが役立つと感じました。 中期経営計画に向けての準備 今後の中期経営計画の策定においては、自分がその責任者になったつもりで、プロダクトの将来を予測し、開発計画を立てることを想定しています。この講座で学んだフレームワークを駆使して、自社のビジョンに基づいた5年後、10年後の理想的な姿を提示できるように、年度内にアウトプットを作成する予定です。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

クリティカルシンキング入門

固定概念をひらく数字探求

どんな切り口がある? データの扱いや切り口を変えることで、見え方や結果が大きく異なることを学びました。「本当にこれだけなのか?」と問い続ける姿勢の大切さを痛感しています。また、思い込みや自身の仮説だけで分析しないよう、注意が必要だと感じました。特に、細かくデータを刻む手法は非常に印象深く、発見の連続でした。 定性と数字はどう違う? 普段は定性的な業務が中心で、データを扱う機会が少なかったので、新しい視点を得られたことに新鮮さを感じました。その一方で、数字をもっと活用すれば、業務の見え方が変わる可能性を実感しました。これまで「この業界はこの数字」という固定概念にとらわれていた部分以外の新たな数字や切り口を探る必要があると考えさせられました。 どんな指標が必要? この授業を通じて、定性的な課題をどのように数字に置き換えるか、またどんな指標を使えば良いのかを改めて考える機会となりました。定性的なものを数字化する際には、それに見合う指標や基準が不可欠であり、その処理方法についても他の受講生の意見や感想を参考にしながら模索していきたいと思います。

リーダーシップ・キャリアビジョン入門

実践が呼ぶ!新たな学びの扉

実践で気づいた点は? ライブ授業でのロールプレイングを通して、上司と部下それぞれの視点から、普段は気づきにくい点が多数あることに驚かされました。知識として知っているだけでは実践に結びつかないのだと痛感し、実際に体験を重ねることの大切さを再認識しました。また、これまで受講してきた講座の内容を振り返ることで、理解が一層深まったと感じています。 日常業務への応用は? 日常業務にこの学びは直結していると思います。まず、自分自身が内容をしっかりと理解し、心から納得した上でそれを語ることが重要です。そうでなければ、相手の共感を引き出すことは難しいからです。その上で、相手の置かれている状況を理解しながら、適切なコミュニケーションを図ることが求められると考えています。 最適な行動は何? また、メンバーとのコミュニケーションにおいては、どの行動タイプが最適か迷うことが多くあります。さまざまな場面において、要素として複数のタイプに当てはまるケースもあるため、どのように判断し、どのように行動すべきかについて、他の受講生の意見も伺えたらと思います。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

データ・アナリティクス入門

原因究明で見出す新たな一歩

原因はどこにある? 問題解決にあたっては、まず問題がなぜ発生したのか、その原因を明らかにすることが非常に重要です。原因究明のためには、問題が発生するまでのプロセスを分解して分析するアプローチが有効です。各プロセスごとにどこに問題があったのかを洗い出し、整理することで、問題の根本原因に迫ることができます。 改善策は効果的? このプロセス分析に基づいた仮説を複数立てたうえで、実際に改善策を試してみることも重要です。たとえば、A/Bテストを活用して実施した改善策の効果を検証し、より良い解決策に結びつけることが考えられます。こうしたステップにより、単なる経験や直感に頼った対応ではなく、実際のデータに基づく精度の高い問題解決が可能となります。 今後はどうする? 今後、課題への対応としては、まず問題が発生した経緯と各プロセスで何が問題だったのかを、具体的なデータ分析の結果から明確にすることを心がけたいと思います。そして、複数の仮説を立てた上で、改善策を実施し、その結果を詳細に分析することで、プロセス全体の質の向上につなげていければと考えています。
AIコーチング導線バナー

「新た」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right