アカウンティング入門

バランスシートで未来を読む

資金活用の意味は? 今週は、資金の使い道や事業への投資の適切さについて学びました。特に、ある視点から企業のバランスシート(B/S)を通して経営者の意図を読み解き、資産の有効活用や安全性に関する考察を深めることができました。固定資産と純資産のバランスが企業の安全性にどのように影響するかを理解し、B/Sに経営者の将来ビジョンが反映されている点を学ぶことで、投資判断の基礎知識を一層強固なものにできたと感じています。 比較検討の要点は? また、業務においては、投資先企業と自社のバランスシートを比較検討する中で、良い点と改善点を洗い出すことの重要性を実感しました。これにより、投資先企業の財務状況を総合的に把握し、投資判断の精度を高めることが可能になると考えています。 成長戦略はどう? さらに、投資先企業の成長を支援するための具体的な戦略の立案や、自社の投資戦略改善へのフィードバックの獲得にも取り組むことができそうです。最終的には、投資先企業の成長が自社の利益にもつながる相乗効果を目指していくというビジョンが明確になりました。 継続的な検証は? 決算書やファイナンス資料を活用し、投資先企業と自社のバランスシートを継続的に分析する中で、良い点や改善点を具体的に把握することができました。これらの情報を基に、定期的なモニタリングと必要に応じた戦略の修正を行うことで、投資判断の質をさらに向上させ、企業全体の成長に寄与できると感じました。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

戦略思考入門

戦略思考で紡ぐ新たな挑戦

全体戦略をどう考える? 戦略的思考とは、論理的なシナリオを構築することであると捉えています。まずは全体を俯瞰し、外部環境を広く観察する中で、市場、競合、顧客と自分自身を比較して、何を実現しようとしているのか、大きな流れを把握できました。その中で、どの領域に注力し、どのように差別化を図ることで最短・最速で目標に到達するかが明確になりました。一方、各種フレームワークを用いてシナリオを組み立てる際に、それぞれの整合性をとる必要があるため、習熟するまでには時間がかかると感じています。 自分の立ち位置は? また、業界や企業を自分自身のものとして捉え、言語化することで、フレームワークを自分のツールにしていきたいと考えています。 新規企画の挑戦は? 今回の学びの経験を活かし、医療・ヘルスケア領域での新規プロジェクト企画に挑戦したいと思います。エネルギー領域の技術調査では多くのデータが蓄積されている一方で、新たなプロジェクト領域については未知の部分が多く、先人の知見を参考にしながらフレームワークを活用し、抜け漏れのない計画を進める所存です。 実行計画はどう進む? 具体的なスケジュールとしては、まず部下とフレームワークの知識を共有して調整を図り(~5月末)、その後6月上旬に新規プロジェクトの大枠となるシナリオを作成します。さらに、6月下旬には不足している情報をヒアリングや調査で補い、7月上旬までに事業計画書に反映させる予定です。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

戦略思考入門

初めてのバリューチェーン体験で広がる視野

どう視野を広げる? 経営者の視野を持ち、大局的に物事を見る姿勢や、ジレンマを過度に恐れず他者の意見をしっかり聴くことが重要だと感じました。これらの点は、自分自身の苦手領域でもあり、改善に向けた具体的なアクションが必要だと認識しています。 どの分析を活用する? フレームワークとしては、3C分析とSWOT分析はこれまでの金融業界での経験から馴染みがありましたが、バリューチェーン分析は今回初めて学びました。担当エリアに製紙業界のお客様が多い中、不景気=収益性低下という認識が根強い現状に対して、各社の強みや弱みを整理するために、この分析手法が非常に有効であると感じています。 顧客実情は分かる? また、法人営業として様々な業種の経営者と接する中、実は企業のバリューチェーンについては十分理解されていないケースが多いと実感しています。バリューチェーン分析に慣れることで、顧客の実情や背景をより深く把握し、3CやSWOT分析を組み合わせた提案が可能になると期待しています。これにより、マクロな経済環境も踏まえたより適切なアプローチができると考えています。 実践に向けてどう? 今後は、主要な顧客のバリューチェーンをまず徹底的に分析し、競合他社との比較を行います。その上で、SWOT分析および3C分析を通じて、各社の強みや弱みを整理し、経営者との面談でフィードバックを受けることで、更なる学びと実践に活かしていきたいと思います。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

マーケティング入門

わかりやすさで広がる可能性

普及要件は何が重要? イノベーションの普及要件として、比較優位性、適合性、わかりやすさ、試用可能性、可視性が挙げられます。中でも特に重要だと感じたのは「わかりやすさ」です。顧客や使用者が具体的なイメージを持ちやすければ、試してみようという動機につながるためです。 顧客視点はどう大切? また、顧客ニーズに沿った商品を開発・販売していると、競合企業が似た製品を市場に投入してくることがあります。こうした状況で競合他社の分析に偏りすぎると、顧客本来のニーズを見落としてしまう恐れがあります。そのため、常に顧客視点を重視することが求められます。 市場導入はどう検討? 新製品を日本市場に導入する際は、イノベーションの普及要件を基に、顧客がどのようなイメージを持つかを十分に検討する必要があります。また、競合製品についても、売れているかどうかを判断するだけでなく、顧客がどのような印象を抱いているかを分析し、その結果を自社製品の改善に役立てることが大切です。 改善策は何がある? まずは、売れていない商品を対象に、なぜ売れていないのかを普及要件に照らして考え、どう改善すれば魅力的になるかをディスカッションすることが有効です。さらに、自社製品については、顧客面談や営業担当との同行などを通じて、私たちが伝えたいメッセージが正しく伝わっているかを確認し、より良いサービス提供につなげる努力が必要だと感じています。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

アカウンティング入門

見直す力が未来を拓く

提供価値はどう評価? ビジネスの提供価値を評価する際は、まずその価値自体を見直し、次に利益やコストなどの数字を確認します。単に数値が高いか低いかだけで判断するのではなく、目指す価値に対してそれらの数字が妥当かどうか、どのような理由や根拠でその評価に至ったのかを、類似するビジネスと比較しながら検証することが大切です。また、目の前の結果だけでなく、将来的な展望も考慮し、日々の業務や行動の中でその視点を意識する必要があります。 ビジネス見直しの視点は? 自分のビジネスや他部門、他社のビジネスを見直す際には、提供価値が何であるか、その価値が他に比べて優れているのか、またお客様に喜んでもらえるのかを常に考える癖をつけることが求められます。グループ内でディスカッションする際には、その価値がどのような点で優れているか、または改善すべき点がどこにあるのかを話し合います。 新商品検証はどう進む? 新しい商品開発においては、初期段階だけでなく各段階でその提供価値を振り返り、再検証することが重要です。コスト資料を確認する際も、他の資料と比較しながら、なぜ費用が高いのか低いのか自分なりの考えを持ち、それをメンバーに説明して納得を得る力を養います。報告や説明を行うときは、できるだけ数値を用いて具体的かつわかりやすい表現を心がけるとともに、商品コンセプトや提供価値に立ち戻って考える姿勢を保ち続けるようにしています。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right