リーダーシップ・キャリアビジョン入門

リーダーの核を育む日々

リーダー像はどう変わる? Week1で記述した「ありたいリーダー像」を再確認したところ、記された内容自体は大きく変わっていないように感じます。しかし、学習を終えた今、どのような行動や考え方がリーダー像に近づくために必要かという基礎が固まった点で、大きな成長があったと感じています。以前より、影響の輪を自分から積極的に発信していく自信がつきました。 行動計画はどう描く? また、今後の具体的な行動として、「目標設定時の自分の納得感を高める」期間には、Plan発表の際に十分な時間を確保し、様々な角度から納得できるプロセスを探り、理由付けと数値目標を立てることに注力したいと思います。 振り返りは何を見る? さらに、「振り返りの時間を取る」ため、手持ちの仕事が完了したタイミングで、仕事の結果を数字で表現し、成功点と改善点の両方を検証する時間を設けます。 数値評価はどう進む? 具体的には、5月以降の期におけるPlan作成時に十分な時間を確保し、4月までに実施した業務についても振り返りを行い、具体的な数値で表現して評価してみる考えです。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

クリティカルシンキング入門

考え方の基本とツールで広げる思考術

基本的な考え方を学ぶ 本講座を通じて、考え方の基本や手法を学びました。特に重要だと感じたことは以下の3点です。 第一に、考え方は偏りが出やすいということ。次に、考え方を広げるためにツール(ピラミッドストラクチャーやMECEなど)を使用すること。そして第三に、客観的に見て本当に正しいかを確認することです。 直感よりも分析を重視 これからも忘れないでいたい点は、直感ですぐに動くのではなく、きちんと立ち止まり、分解して考えることです。これは特に、同僚や上司、取引先への企画や提案、ディスカッションやコミュニケーションツールでのやり取り、そして抽象的な問題が発生したときに意識して行動していきます。人に正しく伝えることが最も重要だと考えています。 クリティカルシンキングの実践 今後始めたいこととしては、クリティカルシンキングのインプットを継続することです。逆に、何事もいきなり清書から始めることを止めたいと思います。そして、クリティカルシンキングのアウトプットを続けていきたいです。 これらを引き続き実施することで、効果的に活用していきます。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

戦略思考入門

経営者視点で広がる新たな戦略

経営視点の重要性は? 大局的な視点で物事を見ること、そして経営者の視点で考えることが非常に重要であると学びました。どうしても自部署の視点に偏りがちですが、最終的な決裁は上長から経営者に至るため、彼らに納得してもらえる結論を導くことが必要です。そのため、短期的なゴールにとどまらず、それが会社全体にどのように貢献するのかを明確に文字にしたいと思います。 意見をどう取り入れる? また、他人の意見を積極的に取り入れることを意識しています。個人での業務が多いのですが、全社に影響を及ぼす可能性が高いため、計画段階から自分以外の視点を追加するよう努めたいと思います。特に競合分析については現場のメンバーがより詳しく見えている場合が多いため、一緒に計画を立てる方法で進めていきたいと考えています。 計画はどう整える? 実際の教育計画において、情報や意見を集める機会を設けたいと思います。さらに、社長や経営層からも意見を聞く場を作り、計画におけるずれがないか確認することで、計画の完成度を高め、実施の際には協力を得られるようにしたいと考えています。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

データ・アナリティクス入門

実践で拓く改善と挑戦

A/Bテストの意義は? A/Bテストは、対象をA群とB群に分け、同時期に検証を実施する比較手法です。工程が少なく導入しやすいというメリットがありますが、比較するポイントを明確にし、他の要素を同一条件に保つ点に留意する必要があります。 時期の違いは問題? テスト対象が別の時期に実施されたものや、大きく異なる要素が含まれている場合、正しい比較が行えなくなるため、十分に注意しなければなりません。 品質会議の狙いは? また、品質管理や作業難易度に関するミーティングでは、参加者にアンケートを実施し、普段の作業の正確さや改善への意識について意見を集めることで、今後の品質管理ミーティングや改善提案に役立てることができると考えています。 学びをどう活かす? 今後は、A/Bテストを活用できるテーマとターゲットを決定し、本日の学びを実践していく予定です。仮説を立てることを前提とし、提案内容が部門方針に合致しているかを意識するとともに、ターゲットが大きく異なる複数の要素で構成されていないことを確認して進めていきます。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

判断のポイントは? 業務において、経験則に基づいて判断できる範囲では、スムーズに業務を進めることが可能です。しかし、実績のない経験則や、必要十分な情報に欠ける状況では、自信を持って意思決定することが難しくなります。そのような場合には、ロジックツリーを用いて自らの思考を体系的に整理することが有効です。こうした方法によって、問いと回答を明確にし、求められている内容を正確に把握する手助けとなります。 意識の高め方は? また、具体化と抽象化を繰り返し実施して、思考の偏りが生じていないかを常に確認することも大切です。さらに、自分自身に「なぜそう考えるのか」という問いを投げ続けることで、別の視点を持つ「もう一人の自分」を育てる意識が培われます。 活用の方法は? このプロセスは、日々の業務や学びにおいて、視点、視野、視座という三つの観点を意識的に活用することで、より豊かな洞察へとつながるでしょう。今後は、これらの考え方を具体的な状況にどのように適用していくのか、実践を通じて深めていくことが期待されます。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

「確認 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right