クリティカルシンキング入門

問いでひらく成長の扉

どんな問いが力になる? 「問いの立て方」を通じて、物事の見方や考え方がどれほど深まるかを実感しました。単に与えられた情報を処理するのではなく、どのような構造で考え、どの問いを起点にするかによって、新たな気づきや適切な打ち手が導かれる点について、改めて整理することができました。 データは何を示す? 特に、観光客数の月別データと目的別データを用いた総合演習は、自分の学びを定着させる絶好の機会となりました。一見、繁忙期や閑散期といった単純な数字も、「目的別」や「季節別」といった切り口を用いることで、たとえば「冬は観光客が少ないが、癒しを求める割合が高い」という特徴が明確になり、それに基づいた打ち手が考えられることに気づきました。 切り口変える理由は? また、実務の現場では、新規事業の仮説検証の際に、最初に目にする顧客データを単に属性別に見るだけではなかなかヒントを得られません。しかし、「購入理由」や「導入経路」、「利用される状況」といった視点で切り口を変えると、急に有用な示唆が得られることを、これまでの実践でも何度も確認してきました。分類の軸を変えるだけで全体像の意味合いや優先順位が変わり、この体験は非常に印象深いものです。 なぜ思考は有効? 今回の学びの価値は、これまでの実務経験とも結びつけながら、「なぜこの思考プロセスが有効なのか」「どこに再現性があるのか」を自分なりに言語化できた点にあります。問いの立て方を、個人の思考にとどまらず、チームやクライアントとの合意形成に活用するための再現可能な手法として捉えることができるようになりました。 何のために問う? さらに、「本質的な問い」とは何かを求める中で、その問いがどの目的に接続しているのか、すなわち「何のためにそれを問うのか」という視点の大切さにも気づきました。問題の背後や上位にある目的を意識すれば、問いそのものの価値が高まり、時間やリソースの限られた中でも本質に迫る打ち手にたどり着けると感じました。この「問いの意味構造を見る力」は、今後の実務においてさらに意識して鍛えていきたい視点です。 どこから始める? 私自身、クライアントとの対話や議論の場では、スライド資料だけでなく、構造化モデリングツールを用いて仮説や課題構造をリアルタイムに可視化する機会が多くあります。こうした場面では、「どこから構造を立ち上げるか」、すなわち「問いの立て方」が成功の鍵となります。問いがあいまいだと、浮かび上がる構造も不明確になり、議論の焦点が定まらなくなるため、今回の演習は思考習慣の向上に大いに役立ちました。 どう対話が始まる? また、「問いを立てる」という行為は、考えるための起点であるとともに、相手との対話を始める契機でもあると強く感じました。これまで「答えを出すこと」や「ロジックの整理」に注力してきましたが、クライアントやチームメンバーとの協働においては、「なぜそれを議論するのか」や「何が明らかになれば次に進めるのか」といった問いかけが、時に大きな価値を持つことを実感しています。 どんな問いが導く? 今後は、コンサルティング方針やワークショップの設計においても、「どんな問いを置くと相手の考えを引き出せるか」「情報提示の背後にある目的は何か」といった点を意識し、単なる情報伝達にとどまらない対話の起点を構築していきたいと思います。問いの精度と設計力を高めることが、実務における支援の質や成果に直結すると確信しています。 問いが成す未来は? 今回の学びは、自分がこれまで積み重ねてきた経験と結びついており、問いを立てる力がコンサルティングの根幹を成す重要なスキルであると再認識する機会となりました。今後も、問いを通じた思考と対話を積極的に実践することで、より本質に迫る支援の実現を目指していきたいと考えています。

デザイン思考入門

万人受け狙わず共感を紡ぐ

本質をどう捉える? 問題の所在や本質を明確にすることは、ビジネスやサービスの成功に欠かせないと再認識しました。市場調査だけでなく、顧客一人ひとりの行動や思考、そして感情に寄り添い、共感する姿勢が重要です。顧客の視点で価値観やニーズを理解することが、より良いデザインやサービスの提供につながると感じました。 万人受けは狙う? 特に印象に残ったのは、「最初から万人受けを狙わない」という考え方です。すべての層に受け入れられることを目指すと、どうしても無難で個性のないものになりがちです。まずは特定のターゲット層にとって真に価値のあるものを生み出すことで、結果としてブランドの信頼や熱狂的な支持が広がると考えています。 体験価値を探る? また、顧客の価値体験を最大化するためには、機能やデザインの良さのみならず、顧客がどんな体験を求めているかを深く理解し、それに合わせた工夫が必要です。顧客の声に耳を傾け、実際に生活の中に入り込むことで、真に求められる価値を見出し、形にすることができると感じました。 学びをどう活かす? 今回の学びを踏まえ、今後は顧客の価値観をより深く理解し、それを実現できるデザインやサービスの提供を目指します。 観察から何発見? 新規事業の創出においては、データ分析や理論だけでなく、実際に人々の行動や習慣を観察することが非常に有効だと実感しました。日常の中で感じる不便さや求められていることを細かく観察することで、まだ顕在化していないニーズを掘り起こすことが可能になると感じました。 接点維持の秘訣は? また、プロジェクトが始まった後もユーザーとの接点を維持することが重要です。市場に出した後も、ユーザーヒアリングや実証実験を通じて継続的なフィードバックを得ることで、最初の想定と異なる課題や新たな改善点が明らかになることがあります。 気づきをどう見る? さらに、観察を続けることで、顧客自身が気づいていない問題を発見できる可能性もあります。普段の生活の中で当たり前だと思われていることにこそ、新たなビジネスチャンスが隠れていると考え、顕在ニーズだけではなく、本質的な課題解決に繋がるアイデアを生み出す手助けになると感じました。 アイデアは価値? 新規事業では、単にアイデアを生み出すだけでなく、そのアイデアが顧客にとって本当に価値あるものかどうかを確認し、進化させるプロセスが欠かせません。そのためにも、ユーザーとの接点を常に意識し、観察を続けることが確かな事業開発につながると考えています。 現場観察の意義は? 顧客との接点を持ち続けることの重要性は、改めて実感しました。新しい事業やサービスを展開する際、データや仮説だけではなく、実際に現場に足を運び、ユーザーの行動や声を観察することで、デジタルデータだけでは見逃しがちな生のニーズや課題を発見できると考えました。 忙しさ克服の方法は? しかし、日常業務の忙しさから、現場に出る時間の確保が難しい場合もあります。それでも、意識的に機会を作り、定期的にユーザーと向き合う習慣を持つことが大切です。例えば、週に一度直接話を聞く時間を設けたり、短時間の現場視察を行うことで、小さな気づきが大きな発見につながると感じました。 特化戦略は有効? また、「万人受けを狙わない」という考え方は、現在進行中のプロジェクトにおいても意識すべき重要なポイントです。あらゆる層に受け入れられようとすると、どうしても特徴が薄れてしまい、誰にも強く響かない結果になる可能性があるため、まずは特定のターゲットにとって圧倒的に価値のあるものを作ることを優先したいと思います。

クリティカルシンキング入門

振り返りで磨く戦略思考

どんな学びがあった? グロービスナノ単科講座では、思考力の向上を目指し、多角的な学びを得ることができました。これまでの学びを振り返る中で、知識の定着や実践に向けた取り組みが一層進んだと実感しています。 なぜ講座を再確認する? 今週は、講座全体を再確認することで、これまで学んできた内容の復習に努め、理解を深める機会となりました。学んだ知識を適宜見直すことで定着を図り、実践へと結び付ける意識を持つことができました。 個人目標はどう振り返る? また、個人目標の達成状況についても振り返り、当初思い描いたありたい姿と比べて成長を実感しました。毎日のリマインド機能の活用や、新聞から問いを立ててアウトプットする取り組みが、思考習慣の向上に寄与しています。一方で、ありたい姿が抽象的であったため、具体的な行動指標(例:「適切なイシューが立てられているか」)を設定し、評価できるようにする点が今後の課題です。さらに、文章作成においては導入部分の追加や段落間に接続表現を用いるなどの工夫で、より読みやすい構成を目指しています。 他者交流で何発見? 他者との交流を通じても、多くの新たな気づきを得ることができました。フィードバックを受けることで、学びを深めるとともに、今後はコミュニティへの参加によって、アウトプットの機会や継続した対話を実現したいと考えています。 戦略立案で何見つけた? 特に、講座の戦略立案パートでは自分の新たな興味を発見することができました。戦略的な視点で物事を捉える考え方に引かれ、日常的に新聞などから気になる事例を見つけるようになりました。今後は、休日にまとまった学習時間を確保し、さまざまな業界の戦略事例を深く調べることで、理解をさらに進めたいと思います。 講座での成果は何? 講座を通じた最大の収穫は、知識習得だけでなく、継続的な学習習慣の構築と新たな興味分野の発見です。具体的な目標設定と実践を繰り返しながら、戦略的思考力をさらに磨いていく所存です。 商談で仮説立てる? 商談時には、フレームワークと問いかけを用いて仮説を立てることで、内容の深掘りを心がけています。他者や顧客の戦略を確認し、課題を検討・準備するための対話に取り組んでいます。また、データの加工やグラフ化、文章作成においては手順を重ね、自己チェックを通じて品質向上に努めています。 実践の計画はどう? やると決めたことを実践するため、タスクを具体的なスケジュールに落とし込み、現実的な実行可能性を常に確認しています。積読の本を厳選して期限を定めて読み切ることや、毎週アウトプットと振り返りの時間を設けることで、継続的な学びを促進しています。さらに、朝晩のリマインドや社内スケジュールの見直し、必要なフレームワークを手元に置くなど、習慣化に向けた工夫を重ねています。 新たな挑戦は何? 新たにはじめたいこととして、特定の書籍の読破やノート形式で抽象と具体のトレーニング、ラテラルシンキングの知見のインプット、必要なデータをスムーズに取り出すための情報収集などを掲げています。引き続き、目的意識を持って全体像を把握し、フレームワークの活用や情報整理に努めることで、より伝わるアウトプットを目指します。 今後の学びはどう? また、今後も新聞のアウトプットに対するフィードバックや、思考を深める問いかけ、そして語彙力向上のためのメモの習慣化を続けることで、多角的な学びを実践していきたいと考えています。

データ・アナリティクス入門

実践で磨く論理・情熱の知恵

目的と仮説は何? データ分析の本質は、目的を達成するための仮説検証の手段であり、その核心は「比較」にあります。目的や仮説を明確に意識し、サンプルの選定や条件の統一に努めることが重要です。仮説とは、生成と修正のループを経る動的なプロセスの構成要素であると考えられます。 バイアスとは何? 比較の観点では、「Apple To Apple」という考え方が、局所管理の重要性を示しています。爆撃機の弾痕のエピソードは「生存者バイアス」の教訓を教えてくれますが、選択バイアス、観察バイアス、確認バイアス、報告バイアス、時間軸バイアス、因果関係の誤認、欠測バイアスなど、さまざまなバイアスの存在に留意する必要があります。実験であれば局所管理、ランダム化、反復といった対策が有効ですが、既存データの分析では多角的な視点から批判的に観察する姿勢が求められます。 論情倫理の均衡は? 私自身は、統計学やケモメトリクスを専門としていたため、論理・データに偏重したアプローチを取ってきました。しかし、近年の経験から、情理や倫理とのバランスが必要であると痛感しています。論理・情理・倫理の三要素のバランスが、良い意思決定を行うためには欠かせません。本講座を通じ、特に現在検討中の人事制度改訂において、データ分析のアプローチを取り入れることで、より客観的な意思決定を実現したいと考えています。もちろん、データはあくまで一要素であり、他の要素とのバランスを崩さないようにしたいと思います。 分析方法はどう違う? 分析の際には、目的遂行のための仮説生成・修正のループを意識し、その駆動力として論理(データ)、情理(共感性)、倫理の三要素を念頭に置くことが大切です。また、論理(データ)の解釈に際しては、「比較である」という原則を守ると共に、生存者バイアスをはじめとした各種バイアスを極小化する意識が求められます。実験的な方策では局所管理、ランダム化、反復の原則が一定の効果を発揮しますが、既存のデータを対象とする場合はさらに多角的な検証が必要となります。 TAPEは何? その実践的なアプローチとして、「TAPE」フレームワークの導入が考えられます。これは、次の観点からデータを捉えるものです。まず、Target population(対象母集団)として、データが本当に分析対象の母集団を代表しているか確認します。次に、Assembly of data(データの集め方)では、どのような条件や手順でデータが収集されたのかを問います。さらに、Predictor/outcome(予測変数と結果変数)が明確に定義され、測定に問題がないかを検証します。そして、Extraneous variables(交絡因子)については、関連しそうな他の要因が適切に制御・補正されているかを考えます。 問いは何? より具体的には、以下の問いを活用します。 ① このデータは誰の、どのような状況を反映しているのか? ② このデータはどのような手法で得られたのか? ③ 仮説として考える因果関係や相関は、他の要因に左右されていないか? 結論はどうなる? 以上のような多角的な視点を持つことで、より精度の高いデータ分析が実現でき、バランスの取れた意思決定に繋がると考えています。

マーケティング入門

誰に何を伝える?実践マーケ術

研修の成果は何? マーケティングの本質である「誰に、何を、どのように売るか」を改めて理解できた研修でした。 お客様視点の改善は? ① 既存製品の開発・改善については、競合製品やサービスに偏りがちな視点ではなく、実際に購入・利用するお客様の立場に立った取り組みが大切であると再認識しました。お客様から利用状況を直接ヒアリングしたり、実際の利用シーンを仮説で描くことも必要だと感じました。同時に、自社製品・サービスと競合との違いや差別化できるポイントをより深く掘り下げる重要性も学びました。 新製品開発で何を知る? ② 新製品の開発では、市場調査の実施が不可欠であるとともに、アンケートなどで得られるデータが必ずしも完全なものではないという現実も理解できました。プロダクトアウトに走るのではなく、お客様の抱える課題(ペインポイント)を解消するために、マーケットインの視点で製品やサービスを企画する姿勢が求められます。また、他社との差別化においては、お客様にとって真に価値のある要素や、期待を超える満足を提供できるポイントを見出す意識が必要です。 値決めの危機感は? ③ 価格設定については、かつてある著名な経営者が語った「値決めは経営」という言葉を思い出し、肝に銘じたいと感じました。お客様に受け入れてもらうために安易に低価格を設定すると、売上や利益だけでなく自社の製品・サービスの価値自体を下げかねないと危機感を覚えました。お客様の期待を超える提供内容を追求し、対価を適正に得られる仕組みを常に問い続ける必要があると実感しました。 販売手法はどう見る? ④ 販売チャネルに関しては、B2C、B2Bともに多様化している現状を踏まえ、採用するチャネルひとつで売上が大きく左右される点を再確認しました。単にホームページでの製品紹介に留まらず、お客様が具体的なアクションへと移れるような工夫が必要であり、これまでの対応を振り返る機会となりました。 宣伝効果はどのように? ⑤ プロモーションについては、法人向け営業が主体であったため、これまであまり意識してこなかった視点を見直す良い機会となりました。サービス紹介資料や提案書が本当にお客様に響いているのか、「だから何?」「効果は何か」を意識して再検討したいと考えました。これまで使用していた会社紹介、サービス紹介資料、提案書、ホームページの内容をお客様目線で見直し、営業メンバーが自律的に改善に取り組めるよう、具体的なストーリー性を持たせた働きかけを行いたいと思います。 経営報告はどう伝える? また、経営企画担当として財務状況などの報告を行う際も、形式的な資料ではなく、その時々の問題や課題に焦点を当てた内容にする必要性を感じました。毎回「だから何?」「誰に、何を、どのように伝えるのか」を意識し、報告資料を作成していくことを心掛けるとともに、この視点を「誰に、何を、どのように売るか」というマーケティングにも活かしていきたいと思います。 戦略計画に今後は? 最後に、プロモーション活動については、街中のさまざまな施策を意識的に観察し、その意図を汲み取ることで、売れる仕組みづくりに具体的に反映できるよう今後の戦略計画に取り入れていく所存です。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

デザイン思考入門

デザイン思考でCX・EXを劇的向上

デザイン思考の学びとは? 今回の授業を通じて、デザイン思考のステップを学ぶことができ、ワークを通じてその理解を実践的に深めることができました。特に印象的だったのは、「自分の気分を色で表現する」というアプローチです。この手法は非常に斬新であり、言葉では伝えづらい感情や思考を視覚的に捉えられる点が非常に興味深かったです。 CXやEX向上への活用法とは? デザイン思考の考え方は、普段の業務で扱う顧客体験(CX)や従業員体験(EX)の向上に直接活用できると感じました。例えば、ホテル業界のクライアントが抱える「オンライン上の旅行代理店の評価向上」や「レビュー分析の効率化」といった課題には、ただアンケート結果を分析するだけでなく、実際の宿泊客がどのような体験をしているのかをきちんと理解する必要があります。デザイン思考を応用し、宿泊客のペルソナを作成し、彼らの視点から課題を捉えることが重要です。これには、既存のフィードバックに加え、インタビューや観察を通じた定性的な情報を収集し、体験の課題を明確に定義して創造的なソリューションを検討するアプローチが有効です。これにより、より本質的な改善策を提案できる可能性があると考えています。 ペルソナ作成の重要性とは? デザイン思考のフレームに沿ったソリューション提案を試みたいと思います。まず、顧客のペルソナを作成する段階では、クライアントの現状を整理し、ターゲットとなる顧客層である宿泊客や従業員の特徴を明確にします。そして、過去のアンケートデータやレビューを分析し、代表的なペルソナを作成します。このペルソナをクライアントと共有し、実態とのズレがないか確認します。 定性的情報の収集方法は? 次に、定性的な情報を収集する段階では、クライアントに宿泊客や従業員へのインタビューを提案し、必要ならホテル現場を見学して宿泊客の行動やスタッフの対応を観察します。また、オンラインの口コミやレビューを詳しく調べ、テキスト分析を使ってパターンを把握します。 課題の定義と可視化の仕方は? 顧客体験の課題を明確に定義する段階では、収集した定量データと定性データをもとに、顧客の不満や期待値とのギャップを整理します。課題を「宿泊前」「滞在中」「宿泊後」に分けて可視化し、クライアントと共有します。そして、影響度と実現可能性を基に、クライアントが優先して取り組むべき課題を整理します。 創造的な改善策の検討方法は? 最後に、創造的なソリューションを検討する段階では、他業界の成功事例やデザイン思考のフレームワークを活用し、新しい施策を考案します。クライアントとワークショップを実施し、改善策を一緒にブレインストーミングし、小規模なテスト運用を提案して、データをもとに改善を重ねるアプローチを取ります。 これらのプロセスを通じて、デザイン思考の視点を活かしてクライアントにとってより価値のあるソリューションを提供できるようになりたいと考えています。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

小さな仮説、大きな変革

データ分析の効果は? 今週の学びでは、データ分析を活用することで、感覚的な判断から離れ、客観的な事実に基づいた意思決定が可能になると実感しました。特に、仮説を立てた上でデータを収集・検証するA/Bテストや、アンケートの結果を定量的に処理しグラフや数字で確認する技術は、マーケティングやサービス改善に直結する有効な手段であると理解しています。今後は、業務後のアンケート集計やSNS施策において、小規模な仮説検証を取り入れ、データを活かした改善活動を進める必要性を感じました。数字で成果を語る習慣や改善に向けた意識を日々実践し、継続的な取り組みが未来を変える力になると学んだ一週間でした。 講座受講促進の秘訣は? これまでの学びを自分の仕事にあてはめると、講師養成講座受講促進の例として以下のように整理できます。まず、仮説を立てる段階では、「40代女性は講座に興味を持っているものの、日程や価格が申し込みの障壁になっているのではないか」という仮説を設定します。次に、過去の資料請求や問い合わせ、説明会参加者の属性データ、SNS広告やランディングページ(LP)のクリック数、コンバージョン率といったデジタルデータを収集し、申込者と非申込者の属性やアクセスから申し込みまでの動線の違いをグラフで見える化します。年代別、職業別、流入経路別にヒートマップや棒グラフで傾向を把握した上で、例えばLPに掲載するキャッチコピーや導線を2パターン用意してA/Bテストを実施し、効果の高いパターンを検証します。最後に、データの変化を定期的に追い、仮説の修正や新たな施策の追加を繰り返すことで、改善活動を継続していきます。 問題解決の手順は? また、ライブ授業で紹介された問題解決のステップ「What, Where, Why, How」に基づく行動計画も立てました。まず【What】として、講師養成講座の説明会参加者や資料請求者数に対して、受講申込みへの転換率の低さや、特定の層(例:30〜40代女性、地方在住、育児中)の申し込みが伸び悩んでいる現状を整理します。次に【Where】では、SNS広告からLPクリック、説明会参加、申込みへと至る導線の中で、LPでの離脱、説明会後のフォローアップ不足、そして広告のターゲットと実際のコンテンツの連動性不足といった課題があると考えます。【Why】においては、SNS広告の内容がターゲットのニーズ、例えば「副業」や「子育てとの両立」に十分応えられていないこと、LPの構成の不明瞭さ、説明会の内容と申込みへの動線が断絶していることが原因として挙げられます。最後に【How】として、SNS流入データや属性情報をもとに複数の仮説を抽出し、属性別のクリック率、離脱率、申込率をグラフ化して問題箇所を特定、A/Bテストで各施策の効果を検証し、成果の高いアプローチを標準化して他のターゲットにも応用していく、という一連の具体的な対策を検討しています。

クリティカルシンキング入門

問いで拓く戦略の未来

実例から学ぶ分解方法は? 実際のファストフード店の事例を通して、分解の仕方が違った切り口で学べたことが印象的でした。Week2の内容を思い出しながら、既存のパターンに加えて新たな切り口も見つけ、復習とパターンの拡充に繋げたいと考えています。 イシュー特定はどうすべき? また、イシューの特定が適切な打ち手を導く上で重要であると実感しました。打ち手を先に検討しても、イシューの特定が不十分では、施策が誤った方向に向かう可能性があります。実例では、客単価が下がったことを背景に、来店人数を増やすことで売上を向上させる施策が取られていました。もし客単価向上の施策を優先していたら、来店人数の伸びに結び付かなかったかもしれないと思います。 データ出し方は正確? データの出し方についても、漏れがあると問題特定が誤るリスクがあると学びました。データの提示方法や切り口について、「本当にこれでよいのか」と自問し、他者の確認を重ねることが重要であると感じています。 意見分裂をどうまとめる? さらに、イシュー特定を深めるために、チーム内で意見が分かれる場合のアプローチ統一や、異業界での異なる切り口を考えることも示唆されました。問いを常に意識し、共有することで、組織全体の方向性が明確になると理解しました。問いを中心に据えることで、議論が脱線せず、具体的かつ一貫した分析が可能になると実感しています。 問いの正しさは確認できる? 商談においても、そもそも自分たちが立てる問いが正しいかどうかを精査することが必要です。お客様との認識すり合わせを丁寧に行い、正確なイシュー設定を心がけることで、より適切な提案へとつながると考えています。また、これまではアイデア出しから議論を始めるケースが多く、議題が散漫になることもありましたが、今後はまず「何が課題か」を共有し、その上で話し合いを進めるようにしたいと思います。具体的には、イシューを画面共有して可視化する工夫を取り入れ、焦点がずれないよう意識していきます。 成果に結びつく問いは? 今回の学びは、チーム全体での売上向上施策を検討する際にも大いに生かせると感じています。正しい問いを立てることが、成果に向けた思考と行動の第一歩であると実感しました。これからは、上司と相談しながら「何が本当の課題なのか」を問い、仮説とデータ分析に基づいた多角的なアプローチを進めていくつもりです。 統一アプローチの秘訣は? また、誤ったイシュー特定を防ぐためのチェックステップや、チーム内で意見が割れた場合の統一アプローチについても検討し、日々の業務や学習に分解思考を取り入れる意識をさらに高めていきます。例えば、普段からニュースを読む際にも「どのような構造か」「なぜこうなったのか」を意識することで、多様な視点を養っていきたいと考えています。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right