クリティカルシンキング入門

議論が脱線しないための会議術の極意

イシューを明確にするには? イシューを把握し、貫くことの重要性に気付かされました。自分が思っていた以上に、議論が脱線し、本来の目的とは異なる方向でリソースを費やしていたことに気付いたのです。 その防止策として、以下の点が挙げられます: 1. **本当の問いを明示すること**。 2. **その問いに対して的確に問うているか確認すること**。 3. **チームの場合、相手の問いが本当の問いかどうか見極めること**。 どのように会議を改善する? これらを実践することで、案内文章、企画提案書、共有資料、会議など多くの場面で効果を発揮します。特に会議では、議論の中で「何を言っているのだろう?」と思うことが多く、チーム内でイシューが共有されていないことが原因だと感じました。裏を返せば、イシューを明確にセットしてから会議に入ることで、これを防止できると考えています。 今後、現状把握と問題発見、課題設定の機会が増える中で、脱線せずに何を問われているのか、何を問うているのかを意識していきます。次回からは、この会議の目的やイシューを提示してから参加・実施し、その変化を確認してみる予定です。さらに、思索メモのトップに目的やイシューを記載することも心掛けます。 どんなフレームを構築すべき? また、今期から上司のスタイルを模倣して整理していますが、もう少し成長の実感が欲しいところです。イシューに立ち返るフレームを構築し、課題の真因発見に繋げていきたいと考えています。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

クリティカルシンキング入門

本質に迫る思考法を身につけた成果とは

学びをどう振り返る? 今までの学びを、落ち着いて振り返ることができました。一番の収穫は、「本質に迫るにはどうしたらよいか」「どんな思考経路で本質に迫れるのか」というスキルを得たと感じた点です。授業でも何度も強調されたように、学びを何度も読み返し、別ノートにまとめたものと照らし合わせながら自分の習慣として定着させていく。これに尽きると思います。 会議のイシュー設定は? ミーティング時には、ファシリテーターを務めるときに必ずイシューの明確化を行います。また、ミーティング中にズレが生じそうな時には、都度メンバーにイシューの投げかけを行い、議論が軌道を外れないよう努めます。 報告書作成の注意点は? 各種報告時には、文章生成において主語述語を徹底し、上司への報告時やメンバーへの共有時には、一文を読んで確実に理解が得られるような文章を作成します。 プロジェクトでの実践方法は? 現在進行中のプロジェクトでは、以下の点を実施しています。まず、ミーティングのファシリテーション時にはイシューが明確化されているか確認し、ズレが生じそうな場合にはイシューを共有して議論内容が偏らないようにしています。次に、資料作成時には適切なグラフを使用し、数値説明を行う際に浅い説明にならないように気をつけ、視点を変えて報告するようにしています。最後に、上司へ報告する際や仲間への情報伝達時には、主語述語が適切に使われているか確認し、理解しやすい文章を心がけています。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

データ・アナリティクス入門

仮説から実践へ!学びの秘訣

仮説はどう考える? 原因の仮説を考える際、まずは思考を広げた後、いくつかの軸に沿って収束させるという対概念の活用方法を学びました。問題にかかわりがありそうな要素だけでなく、その他の要因も広く挙げることの重要性を再確認しました。 解決策は何で選ぶ? 次に、解決策を検討する際には、選定基準と選択肢をセットで整理することが大切であると感じました。どの軸で絞り込むかをイメージしながら、具体的な解決策の検討プロセスを意識することが、より充実した議論につながると学びました。 集客課題はなぜ? また、社内で実施する勉強会や発表において、集客面で予想を下回るケースが多い現状を振り返り、テーマや内容、告知文に加え、スケジュールや運営、形式といった運用面での見直しの必要性も感じました。 外部連携はどう? さらに、外部リソースの活用にあたっては、パートナー企業の選定が有効な解決策となる場面もあります。解決策のリストアップや選定基準の設計において、この方法が実際に役立つと実感しています。 意見はどう生かす? 最後に、Q2に記載されている二点については、必要なタイミングで適用しています。普段から基準と選択肢をセットで考え、クライアントへの説明に活かしているものの、社内に閉じた課題の解決策検討では見落としがちな部分もありました。自分が見えていない課題や第三者の意見を取り入れることにも、今後積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

初心者でも使える問題解決フレームワーク

実践で感じた課題とは? あるべき姿と現状を比較することを心がけてきたが、いざ実施しようとするとできていないと感じることがあります。そのため、まずはWhat(問題を定める)を意識することが重要だと感じています。課題を考える際は、マーケティングの課題なのか、人材の課題なのかといったように、区分分けをすることが有効です。 ロジックツリーは効果的? 数字はロジックツリーのように因数分解することで、どの要素がどのように貢献しているのか(正負を含めて)を把握できることを初めて知り、これはぜひ身に着けたい知識です。 現状把握と意識共有の方法 まずは状態を確認し、たとえ当たり前のことでも言語化することで現状を把握し、チームでの共通認識を持つことが大切です。その後、原因となる事象を特定し、解決策の検討に進みます。ユーザアンケートをデザインする際には、仮説をもって因数分解ができるように、クロス集計も意識します。 新人教育でのロジックツリーの活用 新人教育ではロジックツリーやMECEを活用して、アンケートデザインにおける考え方の方針をチームで共有し、どんな分析ができるのか、また何をしたいのかを実際に仮レポートを作成してみることも大切です。 フレームワークの選択と目標 あるべき姿と現状を整理するために、優れたフレームワークを見つけ、それを習得することが目標です。また、教えられるように資料に整理することも心がけていきます。

データ・アナリティクス入門

小さな挑戦が未来を創る

問題の原因は何? 問題を特定する際には、まずプロセスごとに整理して考え、複数の案に対して各々の確度を点数化して比較検討する手法が有効だと学びました。また、仮説検証のために小さいサイクルを繰り返すことで、実際の運用の中で迅速に改善策を試すことができると感じています。過去に広告のABテストを実施した経験から、構造を改めて理解することもできました。 チーム士気は上がる? 実務者はこのような小さいサイクルの繰り返しによる検証の重要性を十分に理解している印象ですが、一方で意思決定者はサイクルの大きさに注目しがちだと感じました。今回の学びを社内で明確に説明することができれば、チーム全体の士気向上にもつながるのではないかと考えています。 売上の謎を解く? たとえば、自社ECサイトのアクセス解析において、「特定商品の売上が伸び悩んでいる一方で、検索数は増加している」という状況が見受けられた際は、売上の構成要素や購入プロセスを分解して整理しました。その上で構築した仮説をすぐに検証し、実践することで問題解決に取り組んでいます。 効果はどう確認? また、繁忙期前にECサイトでセールを実施する際、消費行動を促すフレーズの効果を明確にするため、あらかじめ広告のABテストを行いました。テストの結果をもとに効果の高いフレーズを特定し、繁忙期のセールページに反映させることで、より成果を上げる工夫をしています。

データ・アナリティクス入門

全体を捉える問題解決のヒント

プロセスはどう見る? 問題解決のプロセスは曖昧な実施ではなく、明確に意識しながら進めていく必要があると感じています。ありたい姿と現状のギャップを把握し、単に発生した問題のみを解決するのではなく、全体を俯瞰して問題を特定することが重要だと思います。 何が問題の核心? 【What】:まず、ありたい姿と現状のギャップを正確に捉えること。加えて、全体の中から問題を特定し、対処療法に終始しないよう意識することが求められます。 【Why】:再発防止を見据えた要因分析が十分に行われ、単に問題の裏返しになった解決策に留まっていないかを確認することが肝心です。 【How】:グループメンバー全員がこのプロセスを意識し、行動に移せるかどうかも大切なポイントです。 会議の進めはどう? また、社内会議で問題の共有を行う際には、現在どのプロセスのステータスにあるのかを明確に意識し、視覚化した議論ができるようファシリテーションを心がけたいと考えています。オンライン会議など参加者の理解度が不明な状況では、イメージしやすい議論の進め方が一層重要になります。 データ活用の秘訣は? さらに、定量分析の書籍を通じて学んだ知識を復習し、データ分析における具体的な分析式などの例を自分の引き出しに加えたいと思います。その知識を業務資料に活用することで、社内のデータアナリティクス推進にも貢献したいと考えています。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

「確認 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right