クリティカルシンキング入門

伝わる工夫で魅せる資料術

資料の視覚化は? 伝えたい内容は、単なる言葉だけでなく、視覚的に表現することでより効果的に伝わることを実感しました。テキストや色の使い方、資料上での順序、グラフの種類、そしてメッセージとグラフとの関連性など、工夫する要素が多々あります。これらは、単に思いつきで作成するのではなく、受け手を意識して選び抜く必要があると感じました。さらに、資料を作る際は、どの場面で誰に見せるのか、作成の目的を明確にすることが大切です。 部内外の説明は? 自分が所属する部署では、部内外に業務プロセスの改善や新規プロジェクトの導入を説明するとき、過去のデータと現状の推移を図示するなどして、なぜその取り組みが必要なのかを明確に伝えています。こうした手法は、今回学んだ内容を活かすのに非常に役立っています。また、部下の資料チェックを行う際も、相手に伝わりやすい工夫がされているか、ポイントが正確に押さえられているかを意識するように心がけています。 今後の資料作りは? 今後は、資料作成や確認の際、今回の学びがしっかりと反映され、受け手に必要な情報が探さずとも見つかるような工夫がなされているかを常にチェックする習慣を続けたいと思います。また、表やグラフの種類ごとにその効果を最大限に発揮する使い方をさらに学び、より具体的で理解しやすい資料作りに挑戦していきます。

戦略思考入門

未来予測にAIを活かすビジネスフレームワーク活用法

フレームワークの総合的活用法は? フレームワークを用いることで、自分や関係者だけの限られた情報に縛られず、ビジネスにおいて必要な要素を総合的に考えることが求められます。手に入れられるデータは現時点のものに限られ、未来のデータは推測に依存せざるを得ません。しかし、重要なのは未来に基づいた施策であり、この未来に対する包括的な検討方法をどうするかが鍵となるでしょう。 AIはどこまで活用できる? 一般的なビジネスフレームワークは理解しやすく、人間同士の議論には適しているものの、過度に単純化されている部分もあります。現代ではAIの存在があるため、現時点での事実は人間が収集し、チェック、設定する必要がありますが、未来への影響、特に複雑な交互作用の部分はAIにシミュレーションを任せるといった取り組みが求められるでしょう。 AIを用いた未来予測の具体策は? 使い慣れたビジネスフレームワークに基づいてAIに未来を予測させるためのテンプレートを、DifyやExcelで考案しています。すでに「ゴールデンサークル」や「バリュープロポジション」、「ビジネスモデルキャンバス」、そして「機械学習プロジェクトキャンバス」の素案を作るためのテンプレートが存在しています。これらを活用し、交互作用をも含む未来の予測にAIを利用できないか、o1に相談してみます。

データ・アナリティクス入門

数値とグラフで切り拓く現場力

平均値の違いは? 代表値の種類について学んだ内容はとても印象的でした。単純平均、加重平均、幾何平均、中央値という4つの代表値の違いを理解することで、従来は感覚や指示に頼っていた数値の選択を、論理的かつ具体的に検証できるようになると感じました。今後は、各平均値の特徴を自分の言葉で説明できるよう意識しながら実務に活かしていきたいです。また、Excelの関数を活用して算出することで、より実践的な理解が深まると考えています。 標準偏差の意味は? 標準偏差に関しても、データのばらつきや密集度を数値で把握する有効な指標であることを学びました。従来、平均値だけに注目していた自分にとって、標準偏差を組み合わせて分析する視点は新鮮でした。これからは、データの分析や仮説の立案において、平均と標準偏差の両面からアプローチすることで、より説得力ある結論を導き出せるよう努めていきたいと思います。 グラフはどれを選ぶ? また、ヒストグラムについても初めて触れる機会があり、その有用性を実感しました。今まであまり業務で使用する機会がなかったグラフですが、各グラフの長所と短所を理解することで、情報の伝達方法の幅が広がると感じました。今後は、提案書などでどのグラフが何を効果的に表現できるのか、理由をもって選択できるよう、実践的に活用していきたいと思います。

データ・アナリティクス入門

実務で変わるデータの読み方

代表値の意味は? 代表値という概念について、これまであまり意識していなかった部分を学びました。データの種類や求める数値に応じて、平均値や中央値などを使い分け、全体の傾向を大まかに把握する考え方はとても実務的で役立つと感じました。 グラフの使い分けは? また、グラフの見せ方にも新たな発見がありました。これまで円グラフとヒストグラムを感覚的に使い分けていたのですが、なぜ今回のケースでヒストグラムが望ましいのかを言葉にする難しさを実感しました。ヒストグラムはデータのばらつきを視覚的に示すのに適しており、円グラフは各要素の割合を把握する用途に向いているという点で、両者の使い分けが明確になりました。 幾何平均って何? さらに、単純平均や加重平均については知っていたものの、「幾何平均」という概念は初めて知りました。比率や割合で変化するデータに対して、幾何平均の考え方を用いることで平均を算出する手法を、ケーススタディを通じて理解が深まりました。今後、将来予測や予算・売上の見込みを算定する際にも、この考え方は有効に活用できると感じています。 学びの振り返りは? このような抽象的な概念は、理解しているつもりでも実務で繰り返し使用しないと忘れがちであるため、資料作成や報告の際に今回学んだ内容を改めて振り返る時間を設けたいと思います。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

クリティカルシンキング入門

データで伝える!効果的なコミュニケーションの秘訣

効果的な伝え方とは? 学びになったと感じたことは、相手に伝えたいことを意識して、それに合わせたグラフや文章、イメージを使用することです。 具体的には、比較を行う際には棒グラフを、継続したものを示す場合には折れ線グラフを使用します。また、文章を印象に残りやすくするために、斜体や下線、色をつけたり、フォントを変えたりといった工夫を行います。さらに、捉え方や考え方に合わせたアイコンを表示して、イメージを掴みやすくすることも有効です。 読者を引きつけるには? 文章を書く際には、読んでもらうことを意識します。アイキャッチや興味を引く冒頭を用意し、全体のバランスや体裁を整えることが重要です。また、相手に合わせて文章の硬軟を調整します。これらのテクニックは、業務の様々な場面で役立ちます。指示を受けた業務の報告、顧客への提案、取引関係先への説明、社内への告知などで、相手に合わせて表示や文章を調整することで、伝えたいことを効果的に伝えることができます。 相手のニーズに応える表現 最後に、相手の価値感や状況に合った内容、表現を心がけます。何を達成したいのか、どんなことを望んでいるのか、相手がどの程度の知識を持っているのかを考慮し、関係性に合わせた表現をすることが大切です。これらを意識して、伝えたいことをしっかりと伝えていきたいと思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

学びのバランスを保ちながら進めるコツ

緻密な準備が成功を導く? 慎重になり過ぎず、頭でっかちになり過ぎないことが大切です。手を動かす前に仮説を立て、何を比較するかの指標を決める必要があります。ただし、やってみないと分からないこともあり、その際には柔軟に変更しても問題ありません。 有効な切り口を探る方法は? 引き出しの多さと選球眼が求められます。専門知識が少ない領域では、まずはフレームワークに頼るとよいでしょう。専門知識がある領域にフレームワークを掛け合わせることで、発見が生まれます。筋のよい切り口を選択するためには、現場の肌感覚としてのドメイン知識が重要です。 例えば、webサイトからの問い合わせを増やすための分析が必要な場合、データはすべて手元にあるので実践可能です。流入経路、案件種別、問合せ企業の業種、企業の所在地、案件規模、実施月、実施までの期間など、指標となり得る項目が多数あります。これらの指標を基に、問い合わせ数との相関関係を探ることで、有効な分析が可能となります。 仮説とフレームワークの活用 システムの切り替えに伴うベンダー選定や資料作成、現場からの業務要件整理とRFP作成などの業務においても、フレームワークや仮説の立て方が活用できることを実感しています。これらの方法は、実務において有用であり、実際に業務を進める上での基盤となります。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

クリティカルシンキング入門

効果的な伝え方を学び施策提案に自信がついた理由

資料作成の基本ステップとは? 相手に伝えたい内容を効果的に伝える資料の作成方法を学びました。以下のポイントに基づいて説明します。 まず、伝えたい内容を一文にまとめ、しっかりとフレーズ化します。そして、フレーズ化した内容の根拠としてデータを順番に提示し、相手に情報を探させないようにします。さらに、データの見せ方についても工夫し、適切なグラフや表を用いることで、伝えたい内容を明確に表現します。フォントの大きさや色、太さなどにも注意を払い、丁寧にスライドを作成する必要があります。また、相手に読んでもらうために見出しを工夫することも重要です。 新規人事施策への応用は? この方法は、新規人事施策の立案時に活用できそうです。施策を上司に説明する際や、役員・経営層向けの説明時にも役立ちます。さらに、社内承認取得後に社員向けおよび社外向けに開示する際の説明でも、この手法を効果的に使うことが期待されます。 スライド作成の設計図は? スライドを作成する際には、まず設計図を作ります。最も伝えたい内容や決裁を取得したい内容を一文にまとめ、フレーズ化します。その後、フレーズ化した内容の根拠となるデータを順番に提示します。データの見せ方も工夫し、伝えたい内容に合わせて効果的なグラフや表を用いることで、相手に理解されやすいスライドを作成します。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right