データ・アナリティクス入門

現象を超えて問題の根本に向き合う方法

問題原因をどう特定する? 問題の原因を明らかにするためには、プロセスを細かく分解することが重要です。そして解決策を検討する際には、複数の選択肢を洗い出し、その根拠に基づいて絞り込むことが求められます。 幅広く解決策を模索するには? 私の癖として問題と認識している点は、現象に焦点を当ててしまうことです。このため、なぜそれが問題なのかをさらに分解整理し、その構造を明らかにすることが必要です。その上で、解決策を思いつきや経験で狭めてしまわず、幅広く検討し、なぜそうするのが良いのかを考え実行し、分析することが重要であると感じました。 業務改善に必要なフローは? 具体的な業務としては、説明資料の作成や土地の探索、収支検討などが挙げられます。これらの部分で改善を図り、成果に結びつけるためには、業務フローや仕事上のプロセスを整理・分解し、成果に結びつく打ち手を検討し実行した上で、さらに改善すべき点を検討することが不可欠です。 データ活用の重要性とは? また、データを収集する経験を深めることも重要です。日頃から意識的にデータを取ることで、どのようにデータが業務に効果を与えるかを考えることができます。説明資料を作成する際には、作り込みすぎずにスライドのパターンをいくつか作成し、A/Bテストの要領で部内や課内でフィードバックテストを行うことも推奨されます。

クリティカルシンキング入門

イシューを見抜く成長の軌跡

どうやってイシューを特定する? 進め方としては、まず答えを出すべき問い、すなわちイシューを明確に特定します。その後、論理の枠組みを考え、主張を適切な根拠で支えるという基本の流れを踏むことが重要です。作業を進める中で、イシューを常に意識しながら進めるべきであり、過去にはイシューから逸脱したまま次の作業に移ってしまった経験があり、今後はその点の改善が求められます。 なぜ顧客評価に課題が? また、顧客評価で問題が生じた場合や戦略がうまくいかない状況では、単なる対症療法にとどまらず、根本的な問題が何であるかを特定し、メンバー間で共有することが必要です。特に、エンジニアの方々と仕事をする際には、視点が異なることが多いため、まずは共通してイシューを明確にし、現在の状況と今後の方向性をしっかり合わせることが大切だと感じました。 どうやって情報整理をする? さらに、各顧客ごとにイシューを特定し、現状理解のためにMECEやデータ分析を実施すること、そして顧客との面談前や会議での参加者間のゴール設定が求められます。資料作成の際は、まずデータを整理し、その後報告資料の構成を考え、スライドごとのメッセージを作成していくという流れを守り、順番を変えないように進めることが重要です。会議中もイシューから逸脱しない進行を意識することで、解決策へと着実に導くことができると感じました。

クリティカルシンキング入門

数字の魔法:分解から見える新世界

数字をどう分解する? 数字を分解することで、新たに見えてくるものがある。しかし、どのようにその数字を分解するかによって、見える内容が大きく変わるため、その切り口が重要である。分解のパターンはすぐに思い浮かぶものではないので、日々数字に慣れ親しむことが必要だと感じた。さらに、加工や分け方を考える際には、ある結果が出るだろうといったバイアスを自覚し、数字を見る姿勢を持つことが大切だと考える。また、数値やグラフの見せ方に注意を払い、一旦落ち着いて数字を疑う必要がある。一方で、受け取る側はそのままを信じてしまいがちである。 データはどう精査する? プロジェクトの進捗や品質を分析する際には、単に多い・少ないだけでなく、時間経過での変化といったデータを見る観点も必要であり、これにより状況を正確に把握できるようになる。収集するデータは多いに越したことはないが、多すぎると、メンバーへの負荷やコストが増加するため、取得するデータは十分に精査されるべきである。 問題をどう整理する? プロジェクトにおける問題や課題を整理し、定量的に測れるものをデータ収集の対象とすることが求められる。そして、上司などに説明して自分以外の視点からの意見を取り入れ、多角的に物事を捉えてブラッシュアップしていくことが重要だ。日常生活でもニュースなどの数字に興味を持つ習慣をつけることが大切である。

データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

戦略思考入門

シンプル分析で見える未来

基本の枠組みはどう? 戦略的に考える際、これまで想像していたような高度な分析やフレームワークの活用ではなく、まずはオーソドックスなフレームワークを適切に使いこなすことが大切であると学びました。それぞれのフレームワークで求められる分析の視点や、全体感を持ち偏りなく分析する点、各要素の整合性を保ちながら大胆に仕分けを行う意識が必要だと実感しています。 今後の事業戦略はどう? 自社の中期的な事業方向性を検討するうえでも、この考え方を活用したいと考えています。これまでは「顧客が~だから」「競合が~だから」「自社の強みは~」という議論のもとで方針や取り組みを進めてきましたが、最近のケーススタディを通じて、競合環境が見えづらい業界ならではの難しさを実感することとなりました。今後は、メンバーと議論を重ねながら、各種フレームワークを活用して事業方向性を決定していくつもりです。 3C分析、進め方はどう? まずは3C分析を丁寧に実施します。本講座で学んだように、市場(マクロ)と顧客(ミクロ)をそれぞれ分析し、誰が競合なのかを明確にする点に特に注力したいと思います。自らたたき台を作成したうえで、チーム内で意見を交換し、分析内容を深める予定です。また、分析を進める中で顧客や自社に関するデータが不足する可能性があるため、データ蓄積の仕組みの検討も並行して進める意向です。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

クリティカルシンキング入門

一文字で差がつく伝達術

情報視覚化はどうする? 情報の視覚化と見せ方の工夫について、具体的な手法を学びました。グラフや文字の装飾などを取り入れることで、情報を丁寧に作り上げる必要性を実感しました。特に、プレゼンテーション資料のタイトルに1文字を加えることで、伝えたいメッセージがより明瞭になる点が印象的でした。 レポートはどう伝える? また、レポート作成時には、必要な情報を取捨選択して読み手が情報を探す手間を削減することが大切であると学びました。チーム内で分析結果を共有する資料作成に際しては、実況中継のようにならずに自分のメッセージを明確に伝え、取り扱うデータがメインメッセージとしっかり合致しているかを吟味することがポイントです。視覚的にも分かりやすく整理することで、閲覧者にとって必要な情報がすぐに理解できるレポートに仕上げる工夫が求められます。 広報文はどう伝える? さらに、メルマガの配信や社内広報のメールにおいても、読み手の興味を引くためにタイトルや重要箇所の見せ方に工夫を凝らすことが必要です。こうした実践を通じ、データ分析レポートでは多角的な視点からデータを検証したうえで、メインメッセージを決定し、サポートする情報を厳選する姿勢の大切さを学びました。情報整理の過程で、伝えたい意図がよりクリアになるように微調整を加えることで、より伝わりやすい資料作成を目指していきます。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

データ・アナリティクス入門

数字の裏側に潜む物語

分ける理由は? 先日のライブ授業では、ワークを通じて「分けて見ること」と「比較すること」の重要性を学びました。データを全体で捉えるのではなく、商品や期間ごとに分け、前の商品と比較することで、これまで見えにくかった課題や傾向が明らかになる点を実感しました。さらに、分析の過程で仮説を立て、その仮説を検証するためにデータを集めることで、課題の原因がより明確になり、具体的な対策を講じやすくなると感じました。 分類で見える? これまでの生産業務では、全体の実績や結果だけを見て対応していた面もありました。しかし、今後は部門別、商品別、時期別などにデータを細かく分類し、前年比や他部署との比較も取り入れることで、具体的な改善点を抽出できると考えています。 仮説で検証する? また、数値の変動に対して「なぜこのような結果になったのか」という仮説を自分なりに立て、実際のデータや現場の声を確認して検証するプロセスを習慣化することで、業務改善に向けた提案の質を高めていけると考えています。 成果を活かす? 今回の授業で得た知見を生かし、今後は実績データを部門別や月別に分類し、前年同月比や他部署との比較を通して課題の可視化を進めていきます。加えて、数値の変化に対する仮説の検証を、追加のデータ収集や現場のヒアリングを通して行い、具体的な改善策につなげていくよう努めます。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right