データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

クリティカルシンキング入門

データの分析で新たな視点を発見!

どうデータを見やすくする? データの視覚化と多角的な分析の重要性に気づきました。まずは実数を表にまとめることから始めますが、棒グラフや円グラフといった視覚的に理解しやすい形式でまとめることが効果的です。さらに、データの合計や比率を算出し、実際に手を動かして分析を進めることが大切だと感じました。 MECEで全体を整理? MECEとは「もれなく、ダブりなく」要素を分けることを意味します。これを行うためには、集合、変数、プロセスといったアプローチで全体を分けることができます。MECEを活用する際には、まず「全体」を正確に定義することが重要だと学びました。 本当にそうなのか? 研修アンケートの分析や問題解決方法の提案などの課題に対して、これまでの成功体験に偏らず、「本当にそうなのか?」と疑う姿勢を持ちたいと思います。異なる視点でデータを捉え、グラフ化や比率計算を行いながら、具体的な手を動かして分析を深化させたいです。 分解はどう進める? また、要素を分解する際には、MECEの分け方を意識して「漏れなく、ダブりなく」分けることを心がけ、まずは全体を明確に定義することから始めたいと考えています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

クリティカルシンキング入門

自分も実践したい学びの見える化

視覚化で伝わる? 情報を視覚化する際は、単に事実を羅列するのではなく、まとめた者自身の理解や見解を反映させることが大切だと実感しました。グラフは説明の順序を意識して配置し、関連する情報はまとめることで、伝えたいポイントをより明確に強調できると感じています。 データ管理で工夫は? 普段は情報をグラフ化する機会はあまりありませんが、個別商品の実績データをエクセルシートで管理する際には、この考え方が役立っています。そのため、従業員に自分の見解を伝えるツールとして非常に有効だと感じています。 販売強化で何だろう? たとえば、季節品の販売強化の取り組みを共有する場合には、理由の説明と合わせてこの視覚化のアプローチを活用できます。また、商品販売の目標設定や進捗管理を効率化するために、PCワークの活用機会を増やしていくことも必要だと考えています。 効率的な働き方は? 現状はプレイヤー側の業務が多くなっていますが、利益を生む行動に注力できるよう、効果的な情報の共有を心がけることが、グループ全体の利益向上につながると実感しています。無駄な作業の繰り返しを避け、効率的な働き方を目指していきたいです。

データ・アナリティクス入門

問題解決のプロセスを活かす学び

問題解決のプロセスとは? 問題解決には明確なプロセスがあります。具体的には、What、Where、Why、Howの6つのステップがあり、この順番を守ることが重要です。まずは、なりたい姿と現状のギャップを把握することが分析の第一歩です。そして、解決方法を考える前に、現状で起きている問題の状況や原因を見つけることに時間をかける必要があります。 自分の思考の癖をどう活かす? 私の場合、すぐに解決方法(How)に飛びがちです。しかし、自分の考え方の癖を知ることも問題解決において重要です。オープンデータから社会課題を洗い出すのが現在の業務ですが、仮説に対して問題を絞り込む際にロジックツリーが役立ちます。基本的にはチームで取り組むため、思考のプロセスを視覚化・言語化することで、情報共有を齟齬なく行えるようにしています。 データ分析で何を学びたい? データ分析を体系的に学ぶことで、ロジカルに再現性のあるデータ分析に取り組みたいと思っています。特に、ロジックツリーを作る際には「手書き」を心がけたいと思います。紙に書くことで思考が整理され、重要事項には丸をつけたり矢印を使ったりすることで、優先順位を決めるのに役立ちます。

データ・アナリティクス入門

平均値の活用で変わるビジネス戦略

平均値への新たな気づきは? 私はこれまで、単純平均値、中央値、標準偏差については書籍を通じて知識を得ていましたが、加重平均や幾何平均の重要性について十分に理解していませんでした。特にビジネスにおけるこれらの"平均"の概念の重要性に気づかされました。単純平均値では、表層に現れる数字とユーザーの実感が一致しない場合があり、「平均値(単純平均値)はあまり使えない」という固定観念を持っていました。しかし、その観念は、自分自身が適切な活用方法を知らず、また選択できていないことに起因していると気づかされました。 加重平均がもたらす変化 これまでは単純平均値を用いて、少額製品の評価が難しいと感じ、売上の大きい少数の製品に解析の重点を置いていました。しかし、今後は加重平均値を用いた分析を行うことで、少額製品の販売単価にも注目し、損益分岐点を明確にすることができるのではないかと感じています。 来期計画に反映する方法は? 現在、来期に向けた活動計画の策定を進めており、今回学んだ代表値の考え方を売上分析に反映させる予定です。これにより、前期とは異なるアプローチでデータを作成し、その結果を上位メンバー会議で審議する予定です。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

データ・アナリティクス入門

課題解決を導く仮説思考の力

仮説構築フレームワークの活用法は? 仮説構築のフレームワーク(3Cや4P)を課題解決に活用し、実際に使うことで自分の思考のクセを理解しました。このフレームワークは何度も活用して定着させることが大切だと感じました。また、手元にデータがあるとすぐに分析を始めるのではなく、まず複数の仮説を立ててからデータを用いて検証する順番を強く意識する必要があると学びました。これは、私がデータがあるとすぐに分析に取り掛かるクセがあるためです。 依頼元とのコミュニケーションの重要性 各事業の依頼に対しては、目の前のデータだけで解決するのではなく、本質的な課題を見極めるために依頼元とコミュニケーションをとりながら仮説を立てていくことの重要性を感じました。今回学んだフレームワークを活用し、事業ごとに複数のフレームワークを使い分けながら仮説を広げていくつもりです。 伴走案件への仮説思考の応用法は? 来週から複数の伴走案件が始まる予定なので、課題に対して広い視野を持ちながら仮説の幅を広げていきます。多くの案件を同時に進行する中で、関心や問題意識を向上させると共に、課題の深掘りに差が出ないよう、仮説思考を実践していきたいと思います。

データ・アナリティクス入門

データ活用で未来を変える!実践的AB分析の学び

AB分析の学びとは? AB分析の考え方を学んだことは非常に参考になりました。以前の職場でGoogle Analyticsを使って広告を打っていた時、状況や変更条件を明確にせず、場当たり的に行動していたことを反省しています。 仮説を立てる重要性を知る また、問題解決の過程で仮説を立てることの重要性も学びました。これまではなんとなくデータを集め、目的が薄いままに対応策を練ることが多かったため、今回の学習でその姿勢を改める必要があると感じました。 長期的な効果検証の可能性 さらに学んだこととして、数か月単位で施策を変更するのは難しいものの、一年から数年単位で効果を検証することは可能かもしれないということです。例えば、入学後のパフォーマンスを分析して入試の内容を変える、といった具体例が上げられます。 必要なデータをどう見極める? 現在、大学内で取得しているデータについて、真に必要なものは何か、また不足しているものは何かを見極めたいと考えています。学生生活の構成要素を学業やサークル活動、就職だけでなく、より多くの要素に分解することで、学生のリアルな状況がより理解できるのではないかと思っています。

クリティカルシンキング入門

MECEで魅せるデータ分析の力

MECEをどう意識する? MECEを意識することの重要性を学びました。まず、全体の定義をしっかり決めることが前提です。そして、「モレなく、ダブリなく」を心掛け、仮説を基にさまざまな切り口で分析を進めることが大切です。 データ分析の本質とは? 分析の有用性についても深く理解しました。ただ単に目の前のデータを眺めるのではなく、データを加工し、グラフなどで視覚化することで判断基準が明確になります。例えば、複数年度にわたる人員計画策定においては、現状の人員の将来的な年齢や職責の推移を様々な観点で視覚化し、どの世代の中途採用を強化するべきか分析していきたいと考えます。この分析を通じて、異なる雇用形態を持つ人員の流れを分かりやすく可視化できればと思っています。 効率的なデータ可視化のコツ さらに、実際に手を動かし、データを分解したり、グラフ化することで可視化する努力が重要です。そして、自分以外の視点や意見を取り入れて俯瞰的に見つめることも忘れずにいたいです。全体の定義を決め、モレをなくすため四角を埋めることを意識しながら、自問自答を繰り返し、誰が見ても分かりやすいデータを提供できる資料作りを心掛けたいと思います。

クリティカルシンキング入門

データ整理で見えた多面的な視点の新発見

データはどう活かす? データをグラフ化することで、共有者全員が視点の漏れを確認でき、短時間で状況を把握できることに気付きました。角度を変えて情報を整理することで、複数の視点を生み出すことができました。また、留意点として、分解する際には、思いつくことから手を付けるのではなく、「When」や「How」といった枠組みで考えることで、漏れのない結論にたどり着けることを実感しました。 部門承認はどう取得? 研修計画を部門承認に使用する際には、実施方法や日程、参加者の切り分けなど、多くの検討事項があります。部門の承認を得るために、目的に沿った切り分けの考え方を使う必要があります。そして、部門説明の際には、即座に理解できるわかりやすさや、視覚的に理解が進む資料を重視したいと考えています。学んだグラフ化を使用する機会は少ないかもしれませんが、情報が伝わりやすい図の検討が重要です。 資料作成の工夫は? 具体的には、切り口や切り分けの考え方を一枚にまとめ、自分なりの順序を整理します。そして、研修計画の検討事項ごとに切り分けを行い、提案資料を作成する際には、数字や表ではなく、図で示すことができるよう工夫してみます。

データ・アナリティクス入門

視野が広がる!見える化の奇跡

視野はなぜ狭く? 全回のライブ授業を通じて、自分の傾向が明確になりました。経験則の範疇で物事を考えてしまうために、視野が狭くなっていることを実感するとともに、かつて学んだ内容も十分に活かしきれていないことが分かりました。 見える化に何を感じ? 授業で取り入れられていたプロセスやビジュアル化の工夫は、自分の思考の幅を広げるヒントになりました。一旦自分の発想を見える化することで、整理もしやすくなると感じました。 戦略はどこへ向か? 業務において、データ分析から戦略策定への取り組みは欠かせないため、今回の学びを活かしながら注意点を整理し、実際に見直していきたいと思います。実績データを時系列で比較するなど、どの視点に重点を置くべきか、どこまで深堀りすべきか、その必要性を常に問い直す姿勢で取り組むことが大切だと感じました。 図解は何の助け? 今後は、初期段階からのビジュアル化を心がけ、振り返りながら適切な切り口や判断基準を繰り返し検討していきたいと思います。また、これまであまり活用してこなかったグラフ化にも意識的に取り組み、仮説も含めた考察を関係者と共有し、ディスカッションへと発展させていきたいです。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right