リーダーシップ・キャリアビジョン入門

フィードバックで成長を促すコツ

フィードバックの心得は? フィードバックを行う際には、慎重な心構えが求められます。特に評価が低い場合には、納得感を持ってもらうことが重要です。フィードバックを受けた相手のモチベーションを維持し、未来に向けた前向きな気持ちを引き出すためには、相手の心情に配慮した言葉選びと表情が大切です。また、具体的な事実や数字を提示することで、現在の達成度を明確にし、納得感を高めます。 低評価はどう伝える? 低評価を伝える際には、批判するのではなく、成長を促すスタンスを心掛けましょう。フィードバック後には、受け手が今後取り組むべきことを明確に理解し、前向きな気持ちで面談を終えられるよう目指すことが重要です。自己評価と異なる意見を伝える際も、アプローチ次第で結果を大きく変えることができると信じて、メンバーと向き合いましょう。 年上部下への伝え方は? 経験豊富な年上の部下を持つ場合には、大きなハレーションを避けるため、アプローチに一層注意を払う必要があります。しかし、リーダーとしての役割を果たし、組織や顧客のために必要なことは率直に伝えることも求められます。相手へのリスペクトを忘れず、組織の発展に貢献するために何をすべきか、しっかりと考えを持ちながら部下とのコミュニケーションや1on1面談に臨みたいと考えています。

アカウンティング入門

振り返りが生む分析力と発見の旅

指標分析の重要性を理解する 売上高、営業利益、経常利益、当期純利益といった指標の順番で分析することの重要性を学びました。分析に際しては、比較や対比を用いて傾向の変化や大きな相違点を見出すことが必要です。 説明を丁寧にする意識を高める ケーススタディの設問に答える際に感じたこととして、コアな部分は捉えられているものの、顧客心理の説明においては、もう少し丁寧に説明する必要があると気づきました。これは、言葉足らずな部分を丁寧にカバーすることを軽視していた結果であり、もっと丁寧に説明する姿勢が重要だと実感しました。今後は、説明の出口部分から意識をより高めていこうと思います。 提供価値の分析と強化点は? 自社の提供する価値と競合他社の価値をP/Lから分析し、それによって自社が強化したい点や改善すべき点を考えてみます。さらに、自分が関わる事業の商品やプロモーションで今後どのように注力していくかを検討したいと思っています。 数字の定着と今後の計画 自社のP/Lデータはすでに確認しましたが、数字を頭に定着させるために直近2年分と今期の予測を自分でまとめ、空で言えるようにしてみようと思います。競合他社のデータについては、今後数週間で確認する予定です。そして、推薦いただいた本もぜひ読みたいと思っています。

データ・アナリティクス入門

問題解決力が飛躍的に向上した学び

問題の明確化の重要性とは? 問題解決の4ステップ(What→Where→Why→How)のうち、最初のWhat(問題の明確化)の重要性について学びました。問題の明確化には、ゴールと現状とのギャップを定量的に数字で示すことが大切です。これにより、現状維持でよい部分と強化すべき部分が明確になります。 未来を見据えた戦略とは? さらに、問題がない場合でも、よりよい結果を目指してテコ入れをする際(例えば単価改定や機能追加など)には、現状の状況判断が重要です。また、「もれなくダブりなく」というMECEの洗い出しも欠かせません。 情報共有を促進する方法は? 例えば、自社ECサイトの会員数を120%に伸ばしたい場合、ロジックツリーやMECEを使って会員登録のモチベーションとなる部分を洗い出したり、利用者に行うアンケートの項目を設定する際に役立つと感じました。ロジックツリーを使うことで情報を可視化し、他のメンバーとの情報共有にも役立てられそうです。 過去の例に頼らない新しいアプローチとは? これまで、企画やプロモーションは過去の例を参考に進めることが多かったですが、今後は目的を明確化し、What(問題の明確化)を意識して進めることで、現状の把握に役立て、それを基にした立案に活かしていこうと思います。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

データ・アナリティクス入門

問題解決へのMECE活用術

問題点の把握はどう進める? まず、問題点をきちんと把握し、理想の姿と現在の状況との差を捉えることが重要です。そのためには、物事を様々な角度から分析し、分解する必要があります。平均的に一括りで捉えると、真の問題を見逃す恐れがあります。ここで、MECE(Mutually Exclusive, Collectively Exhaustive)の原則を意識すると、要素を漏れなく重複なく分けることができ、問題の明確化から課題設定がしやすくなります。 数字の状況をどう把握する? 数字の状況や問題点を把握する際には、つい平均で語られることが多くなります。しかし、細部までしっかりと捉えた上でサマリーをすることが大切です。そして、いつでも元に戻れるように、プロセスを明確にしてツリー構造として残しておく必要があります。これを怠ると、感覚的な議論と空論の間を行き来することが多く、物事が進まない原因となります。 視点設定と情報分解の秘訣は? 数字や定量的情報で状況を表し、要素分解を行うことが鍵です。この際、視点の設定が非常に大切ですが、解決したい問題、本来の目標、最終目的を意識し、人に聞きながら自分の考えを伝える形で整理していきます。立ち戻る目的を明確にすることで、偏見がかからないように注意することも重要です。

クリティカルシンキング入門

データ分析で広がる新たな視点

データ分析の基本を押さえるには? データを分析する際には、全体を定義し、MECE(漏れなく、重複のない)を意識した仮説を立てることが重要です。これにより、さまざまな切り口でデータを見ることができ、効果的な分析が可能となります。 また、データをグラフ化することで、視覚的に分かりやすくなり、判断基準を明確にすることができます。ただし、与えられたデータだけで結論を出すのではなく、自分自身で手を動かして深く分析し、異なるデータから他の現象が存在しないか確認することも重要です。 新たな分析法をどう模索するか? 販売データの分析においては、毎月同じ切り口でデータを出している現状があるため、新たな切り口を検討し、どのようにMECEで考えていくべきかを模索したいです。提供された資料の確認の際にも、仮説を持ち、さらに分析を深めることで、他にない切り口を模索していきたいと考えています。 データに接するたびに、MECEが適切にできているか、他にどのような分析の切り口が考えられるのかをしっかり考えたいと思います。また、数字をグラフ化することで、よりわかりやすく情報を整理することの重要性を学びました。これにより、固定概念に囚われず、批判的な視点を持ちつつ柔軟なアプローチでデータに向き合っていきたいと感じています。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

クリティカルシンキング入門

データ分析の神髄を学ぶ: MECE活用法

情報をどう加工する? 情報を分解して考える際のポイントについて学びました。まず、情報を加工して新たなデータが得られないかを検討します。そして、情報の分解には複数の仮説を立て、一度分けた情報だけで判断せず、別の視点から再度分析を試みます。数字を見るだけではなく、グラフ化することで認識しづらかった数字の特徴が浮き彫りになることがあります。 分析時のMECEの重要性とは? 情報を分解するときには、まず全体を定義づけし、MECE(Mutually Exclusive, Collectively Exhaustive)を意識した切り口を見つけます。これにより、重複や漏れがない分析が可能になります。アナリティクス分析時にも、見たままのデータに頼らず、別の視点を意識して分析することが重要です。 過去データの活用法を知ろう コンテンツ制作の企画段階では、MECEを意識し、どの顧客に対してアプローチすべきかを判断します。次の施策を始める前には過去のデータを集計し、数値をさまざまな方向から分解して、過去の傾向を徹底分析します。チームに情報を共有する際には、グラフを用いて視覚的に分かりやすく説明する工夫が求められます。このように、決めつけを避け、別の分解方法が無いかを考えながら分析を進めることが肝要です。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

アカウンティング入門

数字で読み解く戦略のヒント

損益計算書はどうなってる? 損益計算書(P/L)は、企業の収益、費用、利益を示す成績表です。より細かく見ると、5つの利益段階に分けられます。まず、売上高から製造にかかる費用である売上原価を差し引いた売上純利益。その後、売上純利益から販売や宣伝に必要な販管費を引いた営業利益となります。さらに、営業利益に営業外収入を加え、営業外費用を差し引いた経常利益、これに一時的な要因である特別利益や特別損失を反映した税金前当利益、そして最終的に計算される当期純利益という流れです。 戦略判断はどう進む? 現在、戦略立案にあたっては、感覚や周囲から得た情報、または上からの指示で動いている部分が大きいです。しかし、損益計算書を自ら読み解くことで、戦略の正当性や妥当性について客観的な判断ができるようになりたいと考えています。 今週の分析はどう? まず、今週の前半は自社の損益計算書を丹念に分析し、感覚や他社情報に頼らない正確な状況把握に努めます。次に、今週後半では直近3年分の損益計算書を見直し、会社の業績推移を理解する予定です。そして、週末には同業他社の中でトップクラスの企業と、売上規模がほぼ同等の企業2社の損益計算書を比較し、自社の成績状況を業界内でどの位置にあるのか把握したいと思います。

データ・アナリティクス入門

収支分析のプロになれる!問題解決力徹底強化セミナー

問題解決の新しい視点を学ぶ 問題解決において、原因や解決すべき課題を特定する際には、現状と理想の姿との差だけを見るのではなく、その差の割合などの影響も考慮することが重要であると学びました。 思考プロセスの再確認は効果的か? また、思考する際にはWhat、Where、Why、Howといったステップで考えることや、MECE(モレなくダブりなく)で考える重要性を再認識しました。 数字の乖離をどう対処する? 収支分析を行う際、複数の資料から数字を作成していくプロセスで、資料間の数字の乖離が大きくなることがあります。このような場合、原因を特定して修正する必要がありますが、Week2で学んだ問題解決のプロセスを意識することで、原因特定の時間を短縮し、より精緻な資料を作成できると感じています。 資料作成時に気をつけるべきことは? 資料作成時に数字の乖離が発生した際には、やみくもに資料を見返すのではなく、乖離の大きい箇所や影響度を考慮しながら、順番に細かく確認することで、より早く原因を特定することが可能です。 チームでの確認プロセスは有効か? さらに、この考え方をチームメンバーにも共有し、異なる視点から同様の確認を行うことで、資料の精度をさらに高めることができます。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right