データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

アカウンティング入門

数字が繋ぐ挑戦と成長

グループで学びの意義は? グループディスカッションを通して、参加者それぞれの課題は異なっていても、同じ学びを共有しながら問題解決に向かっている姿勢にとても心強さを感じました。 決算書の学びは何? また、決算書を作成する立場と、作成された決算書を読み解いて活かす立場を分けて学ぶ大切さにも改めて気づかされました。これまで途中で諦めがちだった面が、今回の学びで克服できるかもしれないという希望が持てました。 財務諸表の役割は? 財務諸表の意味を言葉にして整理しながら学ぶことで、具体的なイメージが湧き、理解が深まりました。特に損益計算書は儲け方、貸借対照表はお金の調達と使い道、キャッシュフロー計算書はお金の増減を分かりやすく整理できたと思います。 資産・負債はどのように? ただ、資産と負債についてはまだ体感的に理解できていない部分があるため、今後の学びでさらに掘り下げていきたいと思っています。 経営支援の未来は? 今後の目標として、既存の顧客からの経営支援の要望に応え、新規事業開発の壁打ちや発信のサポートにおいて、数字の説得力を持って支援できるようになりたいと考えています。自信をもって提案や判断ができるようになり、数字にも着実に目を向けながら、SNSでの発信を通じてその姿勢をアピールしていきたいです。 前職の知見は活かす? また、前職で多くの中小企業の事業計画に触れてきた経験から、当時の決算書をもう一度じっくり読み解いてみたいという気持ちが募っています。実際に公開されている決算書をみんなで読み合わせ、ディスカッションする機会があれば、さらに理解が深まると期待しています。

アカウンティング入門

財務諸表で見える成長の軌跡

財務三表で判断? 客観的な意思決定を行うためには、事業活動を数字で定量化することが必要です。そのためのツールとして、損益計算書、貸借対照表、キャッシュフロー計算書という財務三表があります。損益計算書はどれだけの利益を上げたか、貸借対照表はお金の使い方や調達方法、キャッシュフロー計算書はお金の増減を示します。これらを読み解くことで、経営状態を把握し、適切な意思決定につなげることが可能になります。 決算報告はどう見る? 自社の決算報告に含まれる財務諸表を通して、自身の業務における課題を明確にするだけでなく、株式を購入する際には対象企業の経営状態を確認し、将来的な成長を予測するためにも活用できます。また、財務三表の数値から経営状態を描写し、バリューチェーンの各プロセスにおけるロスの所在を把握することも目指しています。特に、貸借対照表を深く理解することで、調達にかかる費用がどのように効率的に使われ、どう価値が創出されているかを明らかにしたいと考えています。 会計をどう学ぶ? 現在は予算管理程度しかできていませんが、会計の知識を学ぶことで、減価償却や固定資産の理解を深め、損益分岐点やROA、ROEなどの総合的な分析力を身につけることを目指しています。今後は、学んだことを業務に積極的に活用し、継続的なスキル向上を図りたいと思います。 初心者でも安心? 会計に関する基礎知識が全くない状態からのスタートで不安もありますが、仲間とともに学びながら、「聞くは一時の恥、聞かぬは一生の恥」ということわざを胸に、積極的に知識を吸収していきたいと考えています。どうぞよろしくお願いいたします。

クリティカルシンキング入門

切り口を増やして本質を探る

なぜ切り口が大事? 今週の学習で最も印象に残ったのは、データを分解する際に「切り口を増やす」ことの重要性です。最初は単純に「個人客が減った」「大人客が減った」といった表面的な数字にとどまっていましたが、切り口を組み合わせて分析することで、異なる特徴や原因が浮かび上がるのを実感しました。例えば、博物館の入場者減少をテーマとした演習では、一見分からなかった団体の内訳や大人と子どもそれぞれの動向が、交差する視点を取り入れることで明らかになりました。数字だけを見るのではなく、「本当にそうか?」と問い直しながら多角的な視点で分解する姿勢が、より正確な理解へとつながると感じました。 どう実務に活かせる? また、今回学んだ「切り口を増やして分解する」という方法は、私の業務においても大いに役立つと感じています。資源価格の変動を分析する際にも、単に価格の変動を確認するだけでなく、マーケット全体の動向や地政学的リスク、関連資源の影響など、複数の視点から背景を探る必要があると気づきました。今回の演習を通じて「本当にそうか?」と疑問を持ち続ける姿勢の大切さを学び、今後は一つの要因だけで判断せず、複数の切り口から分析する習慣をつけていきたいと考えています。 どこまで分解すべき? 一方で、物事を分解する際に「どこまで分解すべきか」「ここまでで十分だという感覚はどう育てるのか」という疑問も生じました。分解を極めすぎると、説明する内容が増えすぎて逆に過剰な分析になってしまう懸念もあります。どこが引き際か、判断するための具体的な基準や考え方について、今後さらに学んでいきたいと感じています。

クリティカルシンキング入門

データ分析の新たな視点を拓く学び

数字の見せ方はどう? グラフや比率などの数字の表示方法を変えることで、印象が異なり、最初の情報だけでは気づかない傾向や特徴を発見できることを学びました。グラフ化する際も、分類の仕方によって見えてくるものが変わります。まずはRaw Dataを確認して全体を把握し、その上で何を伝えたいのか整理して数字を整理する必要があると実感しました。 切り口は何で違う? また、数字の切り口によっては本質を見誤ることがあります。そのため、常に複数の切り口を持ち、一つの見方だけではなく、様々な切り口で数字を分析することが重要です。これまで経験に頼っていた切り口も、When、Who、Howを意識することで幅広く持てるようになると気づきました。 データの視点はどう? 私の仕事では日常的にデータに触れ、それを解釈しています。同じ現象の分析にも異なる視点を持つことを心がけています。具体的には、宿泊予約数の動向をデイリーのデータで見ていましたが、週次や月次で見るとどのような違いがあるのかを早速試してみたいと思います。また、他の切り口での分析も手間はかかりますが、視野を広げるために取り組んでいきたいです。 行動する意義は? 自分の思考の癖から抜け出すには、まず行動することが大切です。ひと手間、ふた手間加えて、複数の視点で分析することを心がけます。その際、これまでの分析結果や結論を再評価し、本当に正しいのか疑う姿勢を持ち続けたいです。また、MECE(漏れがなく、ダブリがない)の意識を持ち、ロジックツリーを活用していくことで、このフレームワークに対する苦手意識を克服していきたいと思います。

クリティカルシンキング入門

他者の視点で捉える本質の学び

客観的視点は重要? 自分で作成したデータでは、どうしても見落としてしまう視点がありますが、他者が作ったデータを参照することで、欠落している点に気づきやすいと実感しました。これは、自分自身の思考枠に囚われがちであるためと感じ、課題設定の段階から客観的な視点を持つことの重要性を学びました。 本質を問いかける理由は? 具体的には、MECE(漏れなく・ダブりなく)を意識して要素を分解し、書き出して可視化する作業を通じて、思考の抜けや偏りを減らすことが有効であると理解しました。今後は「なぜその分析を行うのか」「何を明らかにしたいのか」という問いを繰り返し立てることで、本質的な課題に近づけるように意識していきたいと考えています。 実務でどう活かす? また、今週学んだ「本質的な課題を捉える問いの立て方」は、日常業務、特にデータ分析や支援活動の現場で活かせると感じました。例えば、売上や廃棄データの分析において、単に「なぜ数字が下がったのか」という疑問に留まらず、「本当に解決すべき課題は何か」「改善に直結する要因はどこか」といった問いを立てることで、より効果的な対策を導くことが可能となると考えています。 提案に説得力はある? 具体的な行動としては、データ分析業務でMECEを活用して要因を分解し、課題を構造的に捉えること、そして提案活動では、相手の立場に立って本質的な課題を整理し、想定される反論や疑問を洗い出してから議論に臨む姿勢を大切にしていきます。問いの立て方をしっかり意識することで、思考の抜けや思い込みを減らし、説得力のある分析と提案につなげていきたいと思います。

クリティカルシンキング入門

思考を広げる!数字分解の新発見

数字をどう見捉える? 具体的なケーススタディを通じて、数字の分解やイシューの設定、メッセージの伝え方について学びました。数字を分解する際、特定の実例に引っ張られると、考えの幅が狭まることに気付きました。特に「観光」のイメージに縛られると、抽象度を上げる思考が難しくなりがちです。紙に書き出して共通点を探るなど、可視化する方法で考えるのが有効だと感じました。 見直しは本当に必要? また、イシューの設定では、他の数字を何度も確認しないと安心できない点が学びとして大きかったです。ひとつのイシューを見つけたとしても、「本当にそれで大丈夫か」「見落としていることはないか」を考え、数字の分解を見直すことを習慣にしたいと思いました。 チーム戦略はどうする? 現在リーダー役を務めているので、チームのメンバーや組織課題に向き合う際にこの知識を活用したいです。特に次年度のチーム戦略や目標を立てる際には、現状の組織課題をしっかりと把握し、イシューとして捉えた上で解決策を考えていくことが重要です。 抽象化の秘訣は? 抽象度を上げる思考は、身近な課題にも当てはまります。組織課題に取り組む際、他者から聞くチームのイメージや現在の業務に影響されて、思考の抽象度が上がりにくいことがあります。紙に書き出して抽象化する努力をしてみようと思います。また、イシュー設定に関しては、実務では分かりやすいイシューを見つけた時点で他の可能性を除外し、解決策を考えることが多いです。思考のプロセスを意識し、イシューを見つけた後にはそのイシューを再検討し、他の分解方法も試してみることを習慣化したいと考えています。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

数字と論理で未来を切り拓く戦略

何が問題なの? 直面している課題や状況を整理する際、まずは「何が問題なのか」「どこに課題があるのか」「その原因は何か」をはっきりさせ、さらに原因に応じた有効な解決策を検討するプロセスの重要性を改めて実感しました。複数の切り口から状況を把握し、定性的な評価も加味しながら優先順位をつける方法は、日々の業務や計画作成にとても役立っています。 現状のギャップは? また、「あるべき姿」と「現状」とのギャップを定量的なデータで示すことで、問題の本質が明確になる点も印象的でした。具体的な数値やトレンド、ばらつきまで丁寧に分析することで、正しい状態へ戻すための対策が見えてくると感じました。こうした定量分析の視点は、実際の現場での判断材料として非常に有用です。 サンクコストは? さらに、サンクコストの考え方にも気づかされました。すでに支出してしまったコストに固執せず、未来のために合理的な判断を下すことが大切であるという点は、今後の意思決定に活かしていきたいと思います。 MECEの意味は? 最後に、MECE(もれなくダブりなく)を意識してロジックツリーを用いながら事象を整理する方法も、新たな視点として非常に学びになりました。事象を年齢や季節、販売数などさまざまな要素に分解し、全体像を捉える努力は、複雑な問題に対処する上で大いに役立つと感じています。 学びはどう活く? 以上の学びを踏まえ、①定量的データに基づく現状把握、②優先度や重要度を考慮した計画立案、③場面ごとのMECEの適用というプロセスを、今後の日々の業務に活かしていきたいと考えています。

アカウンティング入門

数字で読み解くカフェ戦略

高単価モデルの特徴は? ミノルとアキコのケースを通じて、同じカフェ業界でもビジネスモデルが異なれば、売上高や粗利益、構成比といった財務指標が大きく変わることが理解できました。とくに、ミノルは高単価モデルであるため、項目ごとの金額や構成比からその特徴が一目瞭然です。また、高単価である分、販管費も高くなる傾向があると認識しました。 営業利益の秘密は? 両者の営業利益率は同じ3%にとどまっているものの、ミノルの絶対金額が大きく、客数は少なくても売上が多いという特徴が見受けられました。ミノルの場合、原価や販管費が高くても営業利益額が大きく出るため、ビジネスモデルとしては魅力的に感じました。一方で、費用負担を抑えるためにコスト削減を進めすぎると、品質低下や顧客満足度の低下、リピーターの減少など、悪循環に陥るリスクがあることも理解させられました。 低価格の難しさは? アキコのビジネスモデルは、参入障壁が低いという点では魅力がありますが、大手チェーンとの差別化が難しいという課題もあると感じました。特に、低価格路線の場合、人件費が大きな課題となることが予想され、事業規模が拡大するとさらに別の視点が必要になるのではないかと考えました。 PL確認の重要性は? また、自社のPLを確認することの重要性を再認識しました。自社のPLが思い描いたビジネスモデルに沿っているか、あるいは事業のコアバリューを反映した施策が講じられているかを、社内でしっかり議論する必要があると感じました。理想と現実のギャップを埋めるための具体的な施策を検討することが、持続可能な経営につながると考えています。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right