データ・アナリティクス入門

数字でひも解く学びの裏側

平均値だけで大丈夫? 平均値だけでは現状を正確に把握できないという点に気づきました。B校の平均年齢が30歳であると、一見「大人中心のスクール」と捉えられがちですが、実際のヒストグラムを見ると低年齢層と高年齢層に分かれており、19~40代が希薄な“空洞”となっていることが明らかです。分布のばらつきを示す指標やデータの可視化の重要性を再認識する結果となりました。 利益ギャップは何? また、利益ギャップの分析では「売上=生徒数×単価」や「費用=講師人件費+販管費」など、各要素をツリー状に分解して寄与度を評価すると、生徒数の減少が最も大きな影響を持つことが分かりました。数字を軸に構造、原因、施策へと論理的に掘り下げるプロセスは、限られた時間の中で根本原因を見出す上で再現性が高く、非常に有用だと感じました。 スクールの違いは? さらに、A校とB校の年齢分布を比較することで、それぞれのスクールの課題と強みが浮かび上がりました。具体的には、A校は働き盛り世代が多い一方、B校は子供やシニア層が中心となっており、主要な顧客層が逆転していることが一目で分かりました。このように、セグメント別に指標を比較することで、各拠点固有の課題や有効な施策が明確になると実感しました。 仮説検証は正確? また、仮説を立てた上で講座の時間帯やキャンペーン履歴、交通網のデータなどを用いて検証を行う、仮説思考とデータ検証の往復が大変重要であると学びました。これにより、先入観に捉われず具体的な打ち手を見いだすことが可能になります。 ヒストグラムで理解? ヒストグラムという可視化ツールについても大きな学びがありました。年齢のような連続変数を度数分布として表示することで、山の位置や高さ、外れ値の存在、平均や中央値とのズレなどを直感的に理解しやすくなり、チーム内の共有や迅速な意思決定につながることを実感しました。 今後の視点は? これらの学びを踏まえ、今後は「平均ではなく分布を見る」「結果から逆算して要因を分解する」という視点を意識し、セグメント別の比較や仮説と検証のサイクルを高速で回すことで、的確な改善策を提案していきたいと考えています。 データ分析は万全? この手法はマーケティングデータの作成や報告のほぼすべての場面で再現性高く応用できると実感しました。例えば、月次KPIレポートではサイト訪問者の平均滞在時間だけでなくヒストグラムを活用し、離脱が集中する滞在秒数帯を明らかにします。また、指標をチャネル別やデバイス別に分解することで、最も寄与度の高いセグメントを特定することも可能です。 キャンペーン対策は? 新規顧客獲得キャンペーンでは、過去の結果を年齢と購買頻度の度数分布で可視化し、コンバージョンが低い空洞セグメントに対して仮説―例えばクリエイティブの不一致や配信時間帯の不適合など―を立て、次回のテスト設計へつなげるアプローチを検討します。 リード改善の鍵は? また、リードスコアリングモデルの改善においては、成約率を平均値だけで評価するのではなく、四半位範囲や標準偏差を活用してばらつきの大きい属性を抽出し、スコアリングの重み付けや閾値を再設定することでモデルの精度向上を図ります。 CX調査で何が? CX調査の報告書においても、NPSの平均値のみならずプロモーター・パッシブ・デトラクターの比率をヒストグラムで示すことで、具体的な要因を定量的に明示し、より効果的な施策提案への流れを作ることができます。 ROI分析の焦点は? さらに、広報や広告などのクロスチャネルROI分析でも、チャネル別平均CPAだけでなく、キャンペーンIDや日次CPAをヒートマップでまとめる手法により、特に偏差の大きい日やクリエイティブを特定し、原因の仮説検証を進めることで、改善アクションの精度を高めることができると考えています。 経営判断のサポートは? 最後に、経営層向けのダッシュボード設計においては、平均売上や総リーチといった数値だけでなく、パレート図や箱ひげ図を取り入れることで、主要顧客層の状況や外れ値の影響を直感的に共有し、部門横断の意思決定を加速させる仕組みを実装したいと考えています。 行動計画は具体的? 具体的な行動計画としては、まず今週中に主要KPIレポートの雛形を改訂し、ヒストグラムや箱ひげ図、パレート図を自動生成するツールを作成します。続いて、来週には主要指標を要素分解ツリーで可視化したダッシュボードを試作し、経営層へのレビューを実施する予定です。その後、2週間以内に過去のキャンペーン実績をもとに年齢や購買頻度でビン分けし、空洞セグメントの抽出ロジックを構築します。 改善プロセスの定着は? 今月末には空洞セグメント向けのテスト設計を完了させ、翌月にはリードスコアリングモデルの再学習と改善を実施する計画です。また、四半期ごとに寄与度分析レポートを自動生成し、改善施策の立案を行い、継続的に学習と検証を社内に蓄積することで、「平均値→分布」「結果→要因分解」という共通プロセスを定着させていきたいと考えています。

アカウンティング入門

数字が繋ぐ出店成功の秘訣

損益計算書の要点は? 損益計算書は、会社の収益状況を示す成績表として、売上総利益、営業利益、経常利益、税前当期純利益、そして最終的な当期純利益という5つの基本項目から構成されています。売上総利益は、商品やサービスの販売前に発生する費用を差し引いた数値を示し、営業利益は本業から得られる利益を表します。さらに、海外からの材料調達に伴う為替差益や、店舗出店時の支払利息などの財務活動による損益を加えたものが経常利益となり、そこに店舗売却益や火災などの一時的な損益を反映させることで税前当期純利益が算出されます。最終的に、税金を差し引いた当期純利益を把握するためには、まず全体の売上推移や各項目の売上比率に着目し、過去の実績や業界平均、自社目標との比較が不可欠です。 出店事例の意義は? 実際のカフェ出店事例では、出店コンセプトの明確化が極めて重要であることを学びました。コンセプトが明瞭になると、それに応じた仕入、店舗設計、採用、設備投資、商品開発などの基本事項が見えてきます。その過程で発生する各種コストの計算も可能となり、継続的な事業運営のために損益計算書を活用して売上アップや経費の見直しといった対策が求められます。売上規模に応じて最終的に残る金額が変化することからも、売上確保の重要性が実感でき、また、販売費や一般管理費の工夫により利益率が改善できる可能性があることが確認されました。 現状把握の方法は? 担当店舗では、まず出店コンセプトに立ち返り、現状とのギャップを把握することが必要です。現状、店舗従業員がどの程度コンセプトを理解しているか、また、従業員や地域、顧客が考える理想のコンセプトとは何かを調査し、今後の方向性を明確にした上で損益計算書を再確認することが求められます。さらに、コンセプトの違いが損益計算書の構成比にどのように影響を及ぼしているのかを把握し、店舗責任者と現状の課題やその対策について話し合うことで、本社と店舗が共通認識を持ち一体となって事業運営に取り組む体制を整えることが重要です。 数値理解を深めるには? 店舗責任者向けの研修では、今回の学びを活かし、各自の数値に対する理解度を高めることを目指します。店舗ごとに異なる規模や運営体系の中で、自ら課題を抽出し改善策を提案できるレベルへ引き上げるため、損益計算書の読み方や、毎月の売上達成状況の確認が基本であることを強調します。講義資料作成にあたっては、単に言葉の定義を伝えるだけでなく、その意味や具体的な活用方法を実践に直結する事例を交えて、すぐに取り組める内容に仕上げることが狙いです。 店舗分析はどう進む? また、既存の担当店舗については、まず上司との間で出店コンセプトの認識を統一し、経営計画書などからコンセプトを再確認します。その上で、店舗の事業活動が売上、利益、経費とどの程度連動しているかを客観的な数値で分析し、店舗責任者に現状の課題を明確にさせることが大切です。具体的な改善策を、損益計算書上のどの項目にどのように反映されるのかという観点から検討し、数値的根拠をもって提案させることで、責任者自身が解決策のイメージを具体化できるよう指導します。 効果の伝え方は? さらに、上司へ改善策を提案する際には、業界の一般的な数値や他社の運営状況を踏まえ、根拠を強化した説得力のあるアプローチが必要です。キャッシュフローの分析など、同業他社の事例を参考にする視点も取り入れながら、改善策の実現に向けた動きが求められます。 自発的研修の意義は? 研修資料の作成に際しては、特に運営費及び一般管理費に着目し、各店舗の費用状況を業界平均や社内の他店舗との比較を通じて分析する内容を検討します。受講者自身が「自らの店舗分析」を通して、主体的に店舗改善に取り組む意識を持てるよう、やらされる研修ではなく自発的な行動を促す構成に留意することが重要です。

クリティカルシンキング入門

問いでひらく成長の扉

どんな問いが力になる? 「問いの立て方」を通じて、物事の見方や考え方がどれほど深まるかを実感しました。単に与えられた情報を処理するのではなく、どのような構造で考え、どの問いを起点にするかによって、新たな気づきや適切な打ち手が導かれる点について、改めて整理することができました。 データは何を示す? 特に、観光客数の月別データと目的別データを用いた総合演習は、自分の学びを定着させる絶好の機会となりました。一見、繁忙期や閑散期といった単純な数字も、「目的別」や「季節別」といった切り口を用いることで、たとえば「冬は観光客が少ないが、癒しを求める割合が高い」という特徴が明確になり、それに基づいた打ち手が考えられることに気づきました。 切り口変える理由は? また、実務の現場では、新規事業の仮説検証の際に、最初に目にする顧客データを単に属性別に見るだけではなかなかヒントを得られません。しかし、「購入理由」や「導入経路」、「利用される状況」といった視点で切り口を変えると、急に有用な示唆が得られることを、これまでの実践でも何度も確認してきました。分類の軸を変えるだけで全体像の意味合いや優先順位が変わり、この体験は非常に印象深いものです。 なぜ思考は有効? 今回の学びの価値は、これまでの実務経験とも結びつけながら、「なぜこの思考プロセスが有効なのか」「どこに再現性があるのか」を自分なりに言語化できた点にあります。問いの立て方を、個人の思考にとどまらず、チームやクライアントとの合意形成に活用するための再現可能な手法として捉えることができるようになりました。 何のために問う? さらに、「本質的な問い」とは何かを求める中で、その問いがどの目的に接続しているのか、すなわち「何のためにそれを問うのか」という視点の大切さにも気づきました。問題の背後や上位にある目的を意識すれば、問いそのものの価値が高まり、時間やリソースの限られた中でも本質に迫る打ち手にたどり着けると感じました。この「問いの意味構造を見る力」は、今後の実務においてさらに意識して鍛えていきたい視点です。 どこから始める? 私自身、クライアントとの対話や議論の場では、スライド資料だけでなく、構造化モデリングツールを用いて仮説や課題構造をリアルタイムに可視化する機会が多くあります。こうした場面では、「どこから構造を立ち上げるか」、すなわち「問いの立て方」が成功の鍵となります。問いがあいまいだと、浮かび上がる構造も不明確になり、議論の焦点が定まらなくなるため、今回の演習は思考習慣の向上に大いに役立ちました。 どう対話が始まる? また、「問いを立てる」という行為は、考えるための起点であるとともに、相手との対話を始める契機でもあると強く感じました。これまで「答えを出すこと」や「ロジックの整理」に注力してきましたが、クライアントやチームメンバーとの協働においては、「なぜそれを議論するのか」や「何が明らかになれば次に進めるのか」といった問いかけが、時に大きな価値を持つことを実感しています。 どんな問いが導く? 今後は、コンサルティング方針やワークショップの設計においても、「どんな問いを置くと相手の考えを引き出せるか」「情報提示の背後にある目的は何か」といった点を意識し、単なる情報伝達にとどまらない対話の起点を構築していきたいと思います。問いの精度と設計力を高めることが、実務における支援の質や成果に直結すると確信しています。 問いが成す未来は? 今回の学びは、自分がこれまで積み重ねてきた経験と結びついており、問いを立てる力がコンサルティングの根幹を成す重要なスキルであると再認識する機会となりました。今後も、問いを通じた思考と対話を積極的に実践することで、より本質に迫る支援の実現を目指していきたいと考えています。

データ・アナリティクス入門

小さな仮説、大きな変革

データ分析の効果は? 今週の学びでは、データ分析を活用することで、感覚的な判断から離れ、客観的な事実に基づいた意思決定が可能になると実感しました。特に、仮説を立てた上でデータを収集・検証するA/Bテストや、アンケートの結果を定量的に処理しグラフや数字で確認する技術は、マーケティングやサービス改善に直結する有効な手段であると理解しています。今後は、業務後のアンケート集計やSNS施策において、小規模な仮説検証を取り入れ、データを活かした改善活動を進める必要性を感じました。数字で成果を語る習慣や改善に向けた意識を日々実践し、継続的な取り組みが未来を変える力になると学んだ一週間でした。 講座受講促進の秘訣は? これまでの学びを自分の仕事にあてはめると、講師養成講座受講促進の例として以下のように整理できます。まず、仮説を立てる段階では、「40代女性は講座に興味を持っているものの、日程や価格が申し込みの障壁になっているのではないか」という仮説を設定します。次に、過去の資料請求や問い合わせ、説明会参加者の属性データ、SNS広告やランディングページ(LP)のクリック数、コンバージョン率といったデジタルデータを収集し、申込者と非申込者の属性やアクセスから申し込みまでの動線の違いをグラフで見える化します。年代別、職業別、流入経路別にヒートマップや棒グラフで傾向を把握した上で、例えばLPに掲載するキャッチコピーや導線を2パターン用意してA/Bテストを実施し、効果の高いパターンを検証します。最後に、データの変化を定期的に追い、仮説の修正や新たな施策の追加を繰り返すことで、改善活動を継続していきます。 問題解決の手順は? また、ライブ授業で紹介された問題解決のステップ「What, Where, Why, How」に基づく行動計画も立てました。まず【What】として、講師養成講座の説明会参加者や資料請求者数に対して、受講申込みへの転換率の低さや、特定の層(例:30〜40代女性、地方在住、育児中)の申し込みが伸び悩んでいる現状を整理します。次に【Where】では、SNS広告からLPクリック、説明会参加、申込みへと至る導線の中で、LPでの離脱、説明会後のフォローアップ不足、そして広告のターゲットと実際のコンテンツの連動性不足といった課題があると考えます。【Why】においては、SNS広告の内容がターゲットのニーズ、例えば「副業」や「子育てとの両立」に十分応えられていないこと、LPの構成の不明瞭さ、説明会の内容と申込みへの動線が断絶していることが原因として挙げられます。最後に【How】として、SNS流入データや属性情報をもとに複数の仮説を抽出し、属性別のクリック率、離脱率、申込率をグラフ化して問題箇所を特定、A/Bテストで各施策の効果を検証し、成果の高いアプローチを標準化して他のターゲットにも応用していく、という一連の具体的な対策を検討しています。

クリティカルシンキング入門

実践で見つける学びのヒント

データ分解のポイントは? ■データや数字を分解するとは、まず一手間かけて実際に手を動かし、異なる要素を取り入れながら分解・分類することです。案ずるより生むがやすしという言葉どおり、実際に試してみることで気づきが得られます。また、MECEの考え方を取り入れて漏れや重複を防ぎ、粒度を統一することも重要です。さらに、統計的手法そのものは使わなくとも、正の相関・負の相関や偏りといった結果が分解の過程で明らかになると考えられます。 視覚化の工夫は何? ■データの可視化では、仕事に視覚的な刺激を与える工夫が求められます。最適なグラフや色使いを意識すれば、直感的に内容が把握しやすくなります。グラフ作成においては、意図を誘導するのではなく、客観的な視点と根拠に基づいて、見やすさを重視した作り方が大切です。 各指標の活用法は? 自社の業務では、生産性や品質、お客様の満足度アンケートなど、数字で示せる指標が多数存在します。日常的に取得されるデータは社内ルールに従い取り出し・分析されていますが、KPIに基づかないデータはまだ十分に活用されていません。たとえば、音声データは今後、AIによる分類が進み、感情や品質の判断などに役立つ可能性があると感じています。 視覚情報活用の秘訣は? ■視覚情報を活かすため、直感的に判断しやすい図形のバリエーションを増やそうと考えました。普段はワンパターンになりがちだったため、見直す必要があると反省しています。同様に、先に述べた通り、グラフは客観的でわかりやすいものを作ることが重要です。 異なる視点の効果は? ■実際に手を動かす段階では、定型的な並べ方だけでなく、あえて異なる視点からグラフを作成してみることが大切です。失敗や試行錯誤の過程が次の発見につながるとともに、同じ行動様式によるバイアスやパターン化を排除する助けになります。たとえ時間効率を重視しすぎず、KPI項目に重点を置いた原因分析や仮説の構築に取り組む一方で、KPI以外のデータからも意外な傾向が見えてくるかもしれません。 比較で見える新発見は? また、数値やグラフの比較や傾向を通じて、何も見えてこなかった場合でも、その経験を次への一歩として前向きに受け止めることが大切です。多くのお手本を参考にしながら、状況に応じて複数のグラフバリエーションを試作し、今まで活用できなかった手法を検証する機会を持つことが求められます。 数字伝達の秘訣は? 最後に、数字による主張を客観的に伝えるためには、自分が立てた仮説や意見を偏らず筋道立てて説明する工夫が不可欠です。どれだけ簡潔な説明ができるかを追求しつつ、数字やグラフからどのように伝えるか、どんな言葉を用いるかを直感と経験で磨いていくことが、最終的な課題解決につながると考えます。振り返りや反復練習を通じて、基本を定着させ、一過性では終わらない実践を続けていきたいと思います。

データ・アナリティクス入門

再発見!数字が語る学びのヒント

講義内容は何を学んだ? 必須部分の講義を受ける中で、これまで一部しか活用できていなかった知識に改めて気づくことができました。グループワークの準備で実践した際にも、新たに把握すべき点があるように感じました。 関連動画はどう見る? 関連動画が充実しているため、改めて視聴して理解を深めたいと思います。 代表値の多様性は? 代表値については、単純平均だけでなく、加重平均や幾何平均、中央値が存在することを学びました。また、全体感を把握するための円グラフや、構成要素の割合とばらつきを見るヒストグラム(標準偏差を用いる)の活用も理解できました。 散布図の意義は? 散布図は、2つの変数の関係性を探るグラフとして有効であると実感しました。相関関係と因果関係は切り離して考える必要があり、関係性は相関係数など数式で表現できる点も印象的でした。 度数分析のコツは? 度数分析では、ヒストグラムを用いて集団の特性を把握する方法について学びました。正規分布だけでなく、必ずしも正規にならないケースや、階級幅の取り方(スタージュの公式など)にも触れることができました。 時系列の変化は? 時系列分析では、過去のデータから将来の予測を試みる手法として、横軸に時間、縦軸にデータをとることでトレンドの変化や予測外の出来事の影響を確認する方法を学びました。傾向変動、循環変動、季節変動、不規則変動に注目し、直近と長期のデータ双方に着目する重要性も理解しました。 パレート効果は何か? パレート分析では、20/80や30/70の法則を棒グラフと累積量を示す折れ線グラフで確認する方法を学び、場合によっては10/90となることもあると知りました。 ウォーターフォールは? ウォーターフォールチャートについては、複数の構成要素を階段状に表現し、正負の要素を分けて時系列での変化を詳細に読み取る手法が紹介されました。ただし、場合によっては円グラフや棒グラフの方がシンプルで分かりやすいこともあるため、状況に応じた使い分けが大切だと感じました。 知識活用の方法は? 今後は、単純平均だけに頼らず、円グラフやヒストグラム以外の表現方法も意識して活用していくとともに、学んだ知識を実務に取り入れ、部下や仲間と共有しながら継続的にアウトプットしていきたいと思います。 計算苦手を克服する? 数字や計算式に苦手意識があるため、今後は復習を重ね、参考図書を活用して学びを深めるとともに、グループワークや他の受講生の振り返りを参考にしながら、データの読み取り方を改善し、最終的には実践的な分析を通して意思決定につなげていきたいと思います。

クリティカルシンキング入門

振り返りから始める成長の技法

何を学んだかな? 全体を振り返って学んだことを整理します。 どうやって問いを定める? 【1.問いを明確にすること】 仕事に取り組む際には、その目的や解決すべき課題を正確に理解することが重要です。これを怠ると、根本的な課題解決につながらず、無駄な時間を費やすことになりかねません。そのため、実際の作業に取り掛かる前に、どの問いに対して取り組むのかを明確にする必要があります。 課題はどう分解する? 【2.課題の分解】 曖昧な課題や大きな課題に直面したときは、課題を構成要素に分解し、具体的なアクションにつなげやすくします。これにより、手触り感があり、次のステップがクリアになります。 データはどう見る? 【3.データの可視化】 データは単なる数字として見るのではなく、目的に応じたグラフを用いることで、異なる視点から分析がしやすくなります。このようにして、課題の特定に努めます。 伝え方はどう工夫? 【4.伝え方の工夫】 例えば、スライド作成においては色使いやメッセージの伝え方次第で、相手に伝えたい内容が正確かつ効果的に伝わることがあります。何をために、何を伝えたいのかを常に意識することが重要です。 これまでの学びを振り返り整理することで、定期的に自分のやるべきことを確認し完遂できるよう心がけていきます。 どこに注目する? 大きく2点について考えることがあります。 企画営業はどう? 1.企画営業において 提案を行う際には、課題や目的を意識した内容と、その伝え方を工夫した資料作りが重要です。これから提案を行う機会が増えるため、今回の学びを活用して意識的に取り組みたいと考えています。 顧客対応はどう? 2.顧客対応において 今後、新規顧客の質疑や個別相談が増えるため、顧客の疑問点をそのまま受け取るのではなく、どの部分に疑問があるのかを的確に把握するコミュニケーションが求められます。お互いに問いを明確にし共有することで、顧客の理解を促し思考を整理しやすくします。この学びを顧客対応に生かしたいと思います。 具体的な取り組みとしては、まずは各会議を思考を深める機会として活用し、アジェンダを参考にしながら重要な問いを明確にし、現状の課題を常に意識することです。この方法で、会議全体での課題に対する共通認識を得られると考えています。そして、自らの知識を広げ、あらゆる業界や役職に対して適切な対応ができるよう努めたいと思います。いずれにしても、「問いから始め、問いを意識し続ける」という姿勢を徹底していきます。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

クリティカルシンキング入門

数値分析にひたる楽しさを発見

数字の分解をどう進める? 数値を分析する際には、その分解が重要です。まず、視覚的に数字を分解する方法として、グラフや率に変換することで、新たな視点が得られます。また、年齢別、男女別、天候、曜日、時間軸、新規既存、場所、近隣施設、売場面積など、あらゆる角度から数字を分解することで、様々な発見が可能です。繰り返し分解することで、新たな傾向が見えてくることもあります。分解しても何も見えない場合は、他の切り口を試してみるのが良いでしょう。 数字分析の重要ポイントは? この分解の作業は、まるでダンジョンを探検するようなもので、新たな気付きを得るほどに面白くなります。しかし、無秩序に進めるのは危険です。そこで、MECE(ダブりなく・モレなく)を意識し、網羅的な数値の切り口を探すことが重要です。また、期間、金額、人数などの下限値や上限値を定義して分解するのも効果的です。 おすすめの分解手法は? 分解手法としては、以下の3つをおすすめします。 1. 層別分解:全体を2つ以上のグループに分ける方法です。例えば、年齢別や所得別に分解します。 2. 変数分解:売上や単価、販売数をもとに、利益率や原価率などに変えて分解する方法です。 3. プロセス分解:入店前、入店後、商品選択・支払い・退店などのプロセスごとに分解する方法です。この手法は、業務効率の改善にも役立ちます。 プロセス分解で何が見える? クライアントからの相談や自分たちの業務効率改善において、プロセス分解は非常に有効です。業務プロセスのどの部分で時間を使っているのか、その部分をさらに細分化し、どの作業に時間がかかっているのかを分析します。それにより、課題解決に繋がり、業務効率改善や業務内容の見直しなど、幅広い提案が可能となります。 問題解決へのステップは? プロセスに着目しながら業務を遂行することで、偏りを拭う習慣をつけ、問題のあるプロセスを分解してみることが大切です。その結果から多くの気付きを得て、解決の糸口を探りましょう。導き出した答えを他者と共有し、さらにブラッシュアップすることも重要です。これにより、3つの視点・視座・視野を広げることができます。 行動計画をどう立てる? 最後に、これらを活用するために計画的なトレーニングを行いましょう。まずは行動計画を立てることから始めて見てはいかがでしょうか。

リーダーシップ・キャリアビジョン入門

評価面談が拓く新たな一歩

評価面談、どう伝える? 今週のライブ授業では、「評価面談」をテーマにしたロールプレイに参加しました。シナリオは、評価者が十分な事前情報を持たずに部下へ悪い評価を伝えるというもので、受講者はそれぞれ評価者役と被評価者役を演じました。私は被評価者役を担当しました。 評価者の選択理由は? 評価者役を選んだ理由は、自分の観察力を活かせると感じた一方で、評価者役に対する自信が持てなかったためです。 印象に残る対応とは? ロールプレイ中に印象深かったのは、評価者役の方の対応です。まず、事実に基づいて評価内容を説明し、感情や主観に左右されずに納得感を伝えていた点が印象的でした。次に、会話の冒頭から柔らかなトーンで接し、相手の意見や感情を丁寧に受け止めることで、防御的にならずにスムーズな対話が成立した点が学びとなりました。さらに、改善点を明確に示しながら、次期への期待やサポートの意志を伝えることで、面談が前向きな雰囲気で締めくくられたことも大きな気づきでした。 苦手意識、どう克服? この演習を通じ、自分は評価者役への苦手意識があることに気づきました。今後は、業績評価やフィードバック面談、クレーム対応、さらには後輩や中堅スタッフとのキャリア面談など、様々なシーンで「事実に基づき、共感をもって伝え、未来への展望を示す」という視点を意識して実践していきたいと考えています。 具体事例、何が必要? 例えば、業績評価面談では、単に「数字が足りない」と言うのではなく、何がどう足りなかったか具体的な事実を示し、本人の努めに寄り添いつつ次への提案をすることが大切です。クレーム対応においても、感情論に陥らず現状を客観的に伝え、相手の立場に立ったアプローチをとることで、スムーズな対応が図れると感じました。また、後輩や中堅スタッフとの面談では、努力を認めながら今後のキャリアや具体的な成長の方向性を話し合うことで、モチベーションの向上にもつながると考えています。 成長環境の仕組みとは? さらに、面談の取り組みを具体的に進めるため、月単位や四半期単位での振り返りと未来志向の対話、週単位の軽い進捗確認、そしてフィードバック内容の「見える化」を実施する計画です。このような仕組みを導入することで、スタッフ自身が自身の成長を実感できる環境作りに貢献していきたいと思います。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

「数字 × 意識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right