データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

アカウンティング入門

数字が語る経営戦略の秘密

収益活動の意図は? オリエンタルランドのケーススタディを通して、その企業が収益を上げるためにどのような活動を行い、その活動が現金の流れにどのように影響を与えているかを分析する重要性を改めて実感しました。特に、人件費が一般的な製造業とは異なり、直接売上に貢献するという考え方に基づいて「売上原価」に含まれている点が非常に興味深かったです。また、災害時のリスクマネジメントとして現金を一定量保有していることが、B/S上に反映されている点も印象に残りました。 戦略策定の秘訣は? 自社の中期経営計画策定にあたっては、まず自社の数字を整理し、競合他社との違いを明確に分析することから始めようと考えています。同時に、他業種のP/LやB/Sを参考にするとともに、異なるビジネスモデルや戦略について学ぶことで、自社の戦略に新たな視点を取り入れる可能性にも期待しています。これまで自業界内での考え方に偏りがあったことを反省するとともに、外部の事例から新たな発想が生まれるかもしれないという期待感があります。 会計と戦略はどう? 今回学んだ内容を実際のビジネスに活かすためには、B/SやP/Lの概念とその戦略への結びつきを深く掘り下げる必要性を痛感しました。まずは、会計と戦略の紐付きを理解できる書籍を用いて独自に勉強し、社内でこれらの知識に詳しい方との意見交換を積極的に進めることで、単なる知識としてだけでなく、実際の経営にどのように活用できるかを自分の中にしっかりと定着させていきたいと考えています。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

クリティカルシンキング入門

振り返りで変わる私の未来

文章はどう伝える? 相手に伝わる文章や資料作成においては、ただ情報を羅列するのではなく、読み手がすぐに理解できるよう、整理された構造と流れを意識することが大切だと学びました。単なる数字や文字の羅列ではなく、必要な情報が一目でわかるように、無駄な言葉を省きつつ具体的な内容を盛り込むことが求められます。 図表はどう活かす? 資料作成では、グラフや図表を効果的に用いるため、まずは単体の数値やデータに適切な単位の記載を行い、その後、データの性質に応じたグラフ(時系列データならば棒グラフ、変化を示す場合は折れ線グラフ、要素ごとのデータなら横グラフ)を利用して全体を俯瞰できるように工夫します。また、フォントや色、アイコン、強調表現の使い分けにより、伝えたいポイントと図表の整合性を持たせることも重要です。 メールはどう構成? メール文章については、結論を最初に示すとともに、題名や書き出しに相手の興味を引く工夫を施し、リード文から注意を引く構成にすることが大切です。文章全体も項目分けや箇条書きを取り入れ、情報を整理して分かりやすく伝えるよう努めています。 学びをどう確認? これまで学んだ数字の分析や日本語表現の技法、資料作成のポイントを振り返り、デスクトップにまとめた内容を常に確認しながら業務に取り組むことが、効果的な資料作成への近道であると感じています。完成した資料は、まるで「もう1人の自分」がチェックしているかのように、全体の整合性や論理性を見渡して仕上げることを心掛けています。

クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

クリティカルシンキング入門

小さな気づき、大きな成長

具体表現って? 文章で相手に情報を伝える際、相手の表情が見えない分、抽象的な表現(いわゆるビッグワード)は避け、具体的な表現を用いることが大切です。数字や具体例を交えながら伝えることにより、誤解なく意図を伝えやすくなります。 資料作成の工夫は? 資料作成では、自分が伝えたい情報だけでなく、相手の興味を引く工夫が求められます。資料全体の流れが分かりやすく、主旨(キーメッセージ)が正しく伝わるよう、レイアウトや順序に注意しましょう。さらに、フォントや色、グラフなどの視覚情報を活かすことで、内容の理解が一層深まります。 メール表現の工夫は? 一方、メール文面においては、堅苦しい表現ばかりに偏らず、柔らかな言葉遣いを心がけることが大切です。状況に応じた柔軟な表現を取り入れることで、相手に親しみやすく、かつ正確に意図が伝わるメールが作成できます。 強調表現のポイントは? また、資料やメールで強調したいポイントを伝える際には、色や書体の特性を意識することも重要です。標準的なイメージや各要素の特徴を理解し、適切に組み合わせることで、伝えたい内容がより鮮明に伝わります。 フォントの使い分けは? 最後に、色や書体について学ぶ機会があったものの、これらの特性が国によって共通しているのかという疑問も残りました。普段、私自身はメールや資料で同じフォントを使ってしまいがちですが、皆さんは普段からフォントや色をうまく使い分け、工夫されているかどうか、ぜひ参考にしていただければと思います。

クリティカルシンキング入門

分解から見出す成長のヒント

分解の切り口は? 先週までの学びで、分解することの重要性については理解が深まりましたが、どのような切り口で分解すれば良いのか疑問にも感じていました。今週の学習で、分解の際に使える代表的な切り口について理解できたことは大きな収穫です。 どの手法を試す? まず、層別分解では、全体を定義した上で「~である/~でない」や年齢、性別、地域などの基準で部分集合に分類します。次に、変数分解では、売上を「単価×販売数量」、利益率を「利益÷売上」といったように、ある事象を構成する変数で分解して考えます。そして、ある事象に至るプロセスごとに分け、その中でいずれの段階に問題があるのかを明確にする方法もあります。 ユーザー離脱の理由は? 現在、会社の採用サイトではユーザーの離脱が多く、目的のエントリーに至らないという課題があります。そこで、ユーザーがどの段階で離脱しているのかを把握し、改善策を検討するために、プロセスの分解を用いてユーザー行動を細分化し、どのフェーズにボトルネックが発生しているか、また何が離脱の原因となっているのかを明らかにしようと考えています。 どの改善策が効果的? 具体的には、ゴールデンウィーク明けに課題に取り組む予定です。まずはプロセスを分解し、各段階で確認できる数字を抽出します。数字に極端な変動がある部分を特定し、そこから仮説を立て、問題の洗い出しを行います。私は、頭を整理するために紙やノートに図を書きながら進める方が分かりやすいため、その方法で取り組むつもりです。

データ・アナリティクス入門

実践で磨くデータ解析の魔法

分析の本質に迫る? 今までは、適当にグラフを選んだり、大まかな平均値を算出するだけで十分だと考え、自分なりの解釈でデータを加工していました。しかし、今回の学びを通じて、目的に応じた最適な計算方法や加工方法が存在することを再認識し、そのおかげで分析力が格段に向上することを実感しました。たとえば、ヒストグラムを用いることでデータの散らばりを可視化できることや、代表値として単純平均だけでなく、加重平均や幾何平均を算出することで、より精密な分析が可能になる点を学びました。演習やグループワークを通じ、目的や仮説に合わせた手法の使い分けの大切さも理解できました。 データ分析をどう工夫する? グラフの作成やデータの計算には苦手意識がありましたが、今回の学びをもとに自主的に練習していくことの重要性を感じました。普段はアプリやITツールを使って数字をまとめ、それをもとに売上報告や予実管理を行っていますが、今後は自分で実際にデータを加工し、深く掘り下げてみようと考えています。たとえば、顧客アンケートの分析においては、単純平均だけでなく、満足度のばらつきを把握するための計算に挑戦したいと思います。また、先週の学びも取り入れ、単にデータを加工するだけではなく、具体的に何を調べたいのか、目的は何かをしっかりと意識しながら実践していきます。 グラフ選びの裏側は? なお、今週の事前準備ではヒストグラムを選んだ方が多かったと感じましたが、他のグラフを試してみた方もいらっしゃるのではないかと考えています。

クリティカルシンキング入門

検証×対話で織りなす学びの物語

仮説をどう検証? 今回の学習を通して、まず自分の感覚を「仮説」と捉え、「本当にそうなのか」「それだけなのか」という視点で検証する重要性を実感しました。検証の過程では、データ分析を行い、さらに他者とのディスカッションを通じて視点を広げ、再検証を繰り返すことでバイアスを減らす方法を学びました。また、数字だけを眺めるのではなく、複数の切り口からグラフ化することで、目的に応じた適切な表現ができるよう工夫する点も大切だと感じました。 資料作りはどう? さらに、スライド作成や提案の際には、情報を相手に伝えるための工夫も学びました。具体的には、現状の把握から始まり、論点を整理し、複数の選択肢(それぞれのメリット・デメリット)を明確に示すことで、推奨案を説得力ある形で提示する流れが有効であると理解しました。こうした手法を用いることで、伝えたい情報が整理され、受け取り手にとって分かりやすい資料が作り出せると感じました。 意見のバランスは? また、研修コンテンツ作成やディスカッションの場面では、課題の本質を見極め、相手の考えを理解しながら自分の意見とバランスを取ることが求められると学びました。実際の振り返りを通じて、実施後の客観的な意見を取り入れ、次に活かしていく姿勢の大切さも改めて認識できました。 挑戦に向けて? これらの学びを踏まえ、文章や資料、データ分析、そしてコミュニケーションといった各スキルを多角的に高めることが、今後の挑戦において重要であると感じています。

リーダーシップ・キャリアビジョン入門

他者の成長を支える私の価値観発見

何を大切に感じた? 過去の仕事を振り返ることで、自分が何を大事にし、価値を感じているのかを言葉にすることができました。私は、自分が関わることで他者が能力を発揮し、周囲から認められるような成果や成長が見られることに価値を感じていると気づきました。ただ能力を活用するだけでなく、社会的評価を得ることも重要視しているというのは、自分では気づいていなかった点で、良い発見となりました。 部下の成果はどう? 部下が成果を出し、成長することで会社や周囲から認められるようにサポートすることが、私にとって価値のあることです。店舗としての成果が求められていますが、その中でも部下が成果を出せるようにしたいと考えています。来店客の担当をある程度私が決められるため、部下が成果を出しやすい仕事の割り振りを行い、仕事を進める中でより良い成果を出すための方法を一緒に考えていきたいと思っています。 進捗はどう確認? 定期的な進捗確認の打ち合わせを設ける予定で、頻度は2週間に1回を考えています。部下本人は数字目標を掲げていますが、それ以外の目標がイメージしにくいようなので、まずは数字目標にどれだけ近づいているか、また、そのための行動ができているかを確認していきたいです。想定している部下は、他人の行動を真似るのは得意ですが、自分で考えたり新しい発想をするのは苦手だと見ています。そのため、打ち合わせの中でその苦手部分を強化するか、もしくはロールモデルを広く探し、糧にできるように働きかけていきたいと考えています。
AIコーチング導線バナー

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right