マーケティング入門

売り手と買い手視点の融合で新たな映像体験を

講義で何が響いた? 今週はライブ講義の総まとめがありました。その中で、ビジネスに関わる自分たちが売り手であると同時に、買い手でもあることを忘れてしまいがちだという意見が他の受講生から出され、非常に共感しました。買い手としての視点を客観的にとらえることは、大きなリソースになり得るのだと強く感じました。 感情で分ける理由? この視点を自分の仕事や業界に当てはめると、映像作品のターゲット設定に役立つと考えています。従来のgenderや年齢でのターゲティングに加えて、視聴者がコンテンツに求める感情(例えばスリル、ワクワク、笑い、感動など)に基づいて新たな視点でセグメントを導入することを検証してみたいです。 調査はどう進める? そのために、消費者調査チームと連携し、より効果的なセグメント設定や調査方法を検討する予定です。また、データ分析チームと協力して、過去の視聴傾向を嗜好で分析することも考えています。さらに、コンテンツ消費はお金よりも「時間」の消費であるため、タイパを重視する世代や時代の傾向にも対応できるよう、プロダクトの視点で作品を見ることで得られる感情を示す工夫をするなどの方法を模索していきたいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

クリティカルシンキング入門

社員研修の見直しで業務効率アップへの道

イシュー設定の重要性を認識 イシューから考えることの重要性を認識しました。施策を考え始める前に、まずイシューを明確かつ具体的に立てることが大切です。これまでに学んだデータの分析・加工方法を活用し、様々な角度からイシューを検討して特定することが必要です。 なぜ研修が必要なのか? 現在の業務において、人事施策、例えば研修内容を検討する際、研修を実施することが目的となりがちでした(= 手段の目的化)。そうではなく、「なぜ研修が必要なのか」を考え、社内のイシューを様々な角度から抽出したうえで、その解決方法として研修が適切ならば研修を行うべきです。しかし、研修以外が適切と判断される場合は、研修を行わない選択も必要だと感じました。 社内イシューをどう特定するか? 社内・現場のイシューを的確に把握するために、従業員へのアンケートや管理職への個別ヒアリングを通じて、イシューの特定を丁寧に行っていきたいと考えています。イシューの特定には、その根拠を具体的かつ明確に説明し、そのうえで研修が適切な解決策なのかを検討します。研修またはその他施策により、特定したイシューの解決を行っていきます。まずは今週から取り組むこととしました。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

データ・アナリティクス入門

データに潜む真実を見抜く技術

視覚的要素の活用法は? 目は最高の分析ツールです。顧客へのプレゼンでは、すぐに理解できるグラフや表を用いることが重要です。特に、目の前にあるデータや事象にだけ引っ張られず、見えないものも比較対象として考慮することが肝心です。分析の着眼点としては、逆説的な発想を持ち、新たな仮説を立てられるようにすることで、重要な点を見落とさない思考を身につけることが求められます。 データ活用で成果を上げるには? 現在の業務においては、データを活用して顧客の課題解決を図っています。営業活動においても、新規顧客の案件獲得やリード獲得にデータを活用できると考えます。しかしながら、広告媒体や営業ツールの選定では、比較対象のデータがフェアに整わないことがあり、会社との相性も考慮する必要があるため、仮説の設定やデータの加工が難しいと感じています。 目的設定の重要性とは? そこで、目的をしっかりと設定することが重要です。顧客の要望をそのまま受け取るのではなく、意思決定や課題解決にどうつながるかを見極める必要があります。また、仮説の設定については、見えているデータ以外にも比較や仮説の対象となるものがないかを意識して考えることが求められます。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

データ・アナリティクス入門

データ分析の視点で課題解決を探る

データ分析で大切な視点とは? データ分析における比較の重要性を学びました。特に、比較対象をゴールに対して適切に選定することの重要性を実感しました。また、目の前にあるデータだけで判断することの危うさも理解しました。これは生存者バイアスの影響です。存在しないデータを考慮することが大切であり、今目の前にあるデータだけで課題解決になるのか、一度立ち止まって考えることの重要性を感じました。 仕事の中でのデータ活用法 私の仕事は、様々な事業部門からのデータ分析依頼に対応することです。その際、依頼されたデータそのままに100%応えるのではなく、そのデータで本質的な課題が解決されるのか、他の視点から分析する余地がないか、など多方面の視点を持つことが求められます。また、新たなデータ取得も視野に入れ、依頼主とともに問題解決に向けて進めていきます。 視点を広げる提案の予定は? 現在対応中の案件では、特定のデータソースを特定の視点から可視化していますが、これは単なる時短や作業効率改善だけではありません。事業部門の本質的な課題である収益性向上や利益改善に向けて、8月内に依頼元にヒアリングし、別の視点からのデータ活用を提案する予定です。

クリティカルシンキング入門

ナノ単科でイシュー思考をマスターしました!

イシューへの理解が深まった瞬間は? よく目にする「イシュー」に関する理解が深まりました。ただ考えるのではなく、問いから始め、その問いを残し、共有することが重要だと感じました。このフレームを意識するだけでも、思考が大きく変わると実感しました。総合演習もケーススタディ形式で楽しく学べ、フィードバックを通じてさらに勉強になりました。 会議で意識するべきことは何? また、会議などでその場を俯瞰して冷静に参加し、常にイシューを意識することの重要性も学びました。話が本質から外れがちな場面では、会議としての具体的な問いが何か、何を話し合うべきかを明確にすることで、有意義な場にするよう努めたいと思います。データ分析の分野での学びも深まりましたので、これを分析や資料作成に活かしていきたいです。 振り返りから学ぶことは? さらに、振り返りを行う際は、問いが何で、その答えが何であったかを明確にし、反省点を洗い出すようにしています。イシューのフレームから外れてしまった場合、次回どうすればそのずれが生じないかについて対策を立てます。これまでも漠然と行っていたことも、具体的に文言化することで理解が深まり、実践力が向上すると感じました。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

クリティカルシンキング入門

データの分析で新たな視点を発見!

どうデータを見やすくする? データの視覚化と多角的な分析の重要性に気づきました。まずは実数を表にまとめることから始めますが、棒グラフや円グラフといった視覚的に理解しやすい形式でまとめることが効果的です。さらに、データの合計や比率を算出し、実際に手を動かして分析を進めることが大切だと感じました。 MECEで全体を整理? MECEとは「もれなく、ダブりなく」要素を分けることを意味します。これを行うためには、集合、変数、プロセスといったアプローチで全体を分けることができます。MECEを活用する際には、まず「全体」を正確に定義することが重要だと学びました。 本当にそうなのか? 研修アンケートの分析や問題解決方法の提案などの課題に対して、これまでの成功体験に偏らず、「本当にそうなのか?」と疑う姿勢を持ちたいと思います。異なる視点でデータを捉え、グラフ化や比率計算を行いながら、具体的な手を動かして分析を深化させたいです。 分解はどう進める? また、要素を分解する際には、MECEの分け方を意識して「漏れなく、ダブりなく」分けることを心がけ、まずは全体を明確に定義することから始めたいと考えています。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right