マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

データ・アナリティクス入門

ギャップに気づく未来への一歩

どのようにギャップ認識? 問題解決のプロセスについて学んだことで、現状と理想(あるべき姿、ありたい姿)のギャップを明確に把握する重要性を実感しました。現状が理想に達していない場合はまず「あるべき姿」を定め、さらに改善を目指す際には「ありたい姿」を設定するという考え方は、今後の業務に大いに役立つと感じています。 どう分類を柔軟に? また、ギャップを特定する際には、MECE(漏れなく、ダブりなく)を意識することが推奨される一方で、状況に応じて「その他」の分類も柔軟に取り入れることが大切だと学びました。単なる分類に終始するのではなく、実際に意味のある分別ができるよう努める必要があると考えます。 何故課題整理が必要? この学びは、データ分析の課題設定において非常に有効です。分析に取り組む前に、まず現状と理想のギャップを整理することで、的確な課題設定と見落としの防止が図れます。さらに、他の人が設定した課題についても、自分なりの視点で再考し、改善点を見つける習慣を身につけることが重要だと感じました。 どのような目標管理? 実際の業務だけでなく、目標設定やソフトウェア導入の検討プロセスにも応用できるこのスキルは、定期的な進捗確認や必要な修正を行うことで、最適な状態を維持するのに役立ちます。自分で設定する課題や目標だけでなく、チーム全体で意見を共有し、ディスカッションすることで、より本質的な問題解決へとつながると期待しています。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

クリティカルシンキング入門

仮説で解く数字のパズル

数字分解のヒントは? 与えられた数字をそのまま分析するのではなく、一工夫加えることで、そこから新たに導出できる数値や傾向に気づくことができました。数字を分解する過程で、単に機械的に区切る方法だけでなく、仮説に基づいた分解を試みると、初期段階で見えた傾向とさらに詳細に分解した際の傾向に違いが出ることを実感しました。 ミッション立案はどう? プロジェクトの初期段階では、全体のミッションを自ら定義し、タスクを洗い出す際にMECEを意識した分解を行うことが非常に重要であると再認識しました。特に、層別分解、変数分解、プロセス分解の3つの分解方法を念頭に置き、問題・課題の解決においても「どこに問題があるのか」「根本原因は何か」「どのように解決していくのか」をWhere、Why、Howの視点から論理的に整理することが有効だと感じました。 情報収集の工夫は? また、数字の分解に関しては、立場やアプローチによって分解できる数字とそうでない数字があるという点にも納得できました。特に、顧客情報や個人情報の取り扱いが厳しくなっている現状では、必要な情報を収集するために、仮説を立てた上で本当に分析に必要な情報を厳選し、十分な手続きを経て入手する必要があると考えています。一方で、実際にデータを集めてみて初めて明らかになる傾向もあるため、収集段階で何を取り入れるべきか、または除外すべきかを判断するのは難しい部分があり、今後の課題として捉えています。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

クリティカルシンキング入門

業務での「MECE」実践法を身につける

学習計画をどう進める? 学習計画を忘れずに進めることが大切だと思いました。私はMECEの分け方でプロセスを分解することを忘れがちなので、この技法を使う癖をつけたいと考えています。 情報収集の重要性とは? さまざまな切り口で分析するためには、常に多様な情報を収集できるようにする必要があると感じました。例えば、カフェでのお客の滞在時間や年齢、それに利用目的をどのように把握するのかについて、日々意識を持って観察しないと有益なデータは得られません。 問題発見にプロセス分解? 業務においても、問題発見と解決のためにプロセスを分解することが有効です。特に問題がなさそうに見える場合でも、分析を進めることで問題が顕在化し、改善策を見出すことができるでしょう。例えば、サプライチェーンやバリューチェーンのどの部分に問題があるのかを見極めたり、予決算分析で単価や数量に分解してみたりすることが挙げられます。また、部下との1on1ミーティングでも、MECEに基づいて事前に準備を進めることが役立ちます。 学びをどう業務に活かす? これらの学びを今日から業務に取り入れてみることが重要です。アナログのツール、例えば紙なども積極的に活用するべきです。そして、単発で終わらせずにしばらく経ってから再度考えることも必要です。また、自分一人では偏りや視点の漏れが生じやすいので、信頼できる他人の意見も積極的に取り入れるように心掛けたいと思います。

クリティカルシンキング入門

データ分析で解決策を見つける喜び

Week1からの学びを総括 今週は振り返りの週ということで、改めてWeek1からの学びを総括しました。 まず、「データを理解し、深く分解すること」や、「相手に正確に伝えるアウトプットの重要性」、「イシューを特定し、それに対する適切な打ち手を考えること」を学びました。 トラブル解決で何を思い出す? 私の業務は製薬会社の生産部門におけるトラブル解決を担当しています。そこで思い出すのは、以下の内容です。 まず、年間目標や業務ごとの課題解決についてです。これには、生産部門でのトラブルの原因究明とその解決策の立案が含まれます。目標の達成に向けてマイルストーンを設定し、各段階でイシューを特定し、対応策を考えることが重要です。 データ分析はどう生かす? 次に、与えられるデータに対する考察についてです。多角的にデータを分析し、イシューを浮き彫りにする能力が求められます。この分析の過程で得られた洞察が、課題解決の手がかりとなります。 メンバー育成の視点で何が重要? 最後に、部門のメンバーのキャリア開発と育成です。これも同様に、個々の成長を見据えたマイルストーン設定とイシューの特定が重要であり、その都度適切な指導やサポートを行うことが求められます。 今回の学びが示す未来 今回の学びを通じて、日々の業務においても適用できるアプローチが増え、より効果的なトラブル解決とチーム育成の実現が期待できると感じています。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

クリティカルシンキング入門

データ分析の「視点革命」で成果を創る

データ加工で解像度は上がる? データを加工・分解することで、その解像度を向上させることができると再認識した演習でした。データに対して複数の切り口を持つことや、1行追加や率を出すといったひと手間も重要であることを実感しました。動画学習では「分解して何も見えなくても失敗ではない」という考え方を学びました。業務の中で、切り口が間違っていると感じることも多々ありましたが、新しい切り口の必要性に気づくこと自体が価値のあることであると理解できました。 本当に慣れているの? 私は経営企画を担当しており、数値分析には慣れているつもりでした。しかしながら、切り口や観点の不足、そして思考の偏りがあると感じることが少なくありませんでした。「慣れている」ということが、思考の停止を生んでいた可能性もあると気づかされました。 業務にどう反映する? 今回の演習で学んだデータ分析の基本的な考え方を、業務に活かしていきたいと思います。特に、社内の業績報告において、単に数値を報告するのではなく、その数値から得られる洞察を分析し、資料として提供していきます。幸い、私の立場は経営層や全社員に情報を発信できるものであり、報告の機会も多いため、この学びをすぐに実践に移すことが可能です。 レポートで何が伝わる? データ分析の結果を報告するための資料作成が、ただの作業とならないように、受け取る側の視点を考慮し、より良い情報発信ができるよう努めていきます。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

クリティカルシンキング入門

グラフ化で見える学びの新発見

自分で動かす意義は? 自分で手を動かしてみることで、理解の解像度が上がるのを実感しました。特に、データをグラフ化して視覚的に捉えるという発想は新鮮で、印象に残りました。 実践で何が見えてる? 自ら手を動かして学ぶことで、学習の理解が深まりました。また、グラフ化の方法についても新しい発見がありました。こうした具体的な例を取り入れることで、理解をさらに進められると思います。 継続の理由は? 今後も、手を動かしながら実践し、新しい手法を積極的に取り入れていくつもりです。継続することが重要だと感じています。 売上分析はどう見る? 売上の過去3年分の推移を、担当別、単科別、クライアント別、職種別に分析すれば、自社の戦略を見出せそうです。特に業績が振るわないコンサルタントについては、売上を既存客と新規クライアントに分けて要因分析し、営業戦略に活用できると思います。また、決定プロセスを徹底的に分析し、CSF(Critical Success Factors)を担当別に分析することもイメージできました。全社売上におけるお客様の属性の変化も分析する価値がありそうです。 実行計画はどうなる? これらの分析を早速実行してみたいと思います。まずどのデータを使うか探し出して加工し、毎週1時間程度の時間を確保して、自分の事業の特徴を深く理解していく予定です。そして、理解した内容を営業戦略にも活かしていきたいと考えています。
AIコーチング導線バナー

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right