クリティカルシンキング入門

多角分析で見える学びの可能性

データ切り取り方は? データの断面によって得られる情報は大きく変わると実感しました。また、切り取り方次第では全く情報が得られない場合もあるため、講義で学んだ層別分析、変数別分析、プロセス別分析など、様々なデータ分析手法を活用することが重要だと感じています。 評価方法はどう? プロジェクト評価の際には、費用増減の要因を多角的に分析することで、内容の深い理解と説明力の向上が期待できると認識しました。実際のデータは、参考とした先行事例よりも複雑であると感じ、分析の試行回数を増やして直感的な感覚を体得したいと思います。

データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。

データ・アナリティクス入門

平均値だけじゃ見えない本質

平均だけで判断? これまで会社内のデータが平均値で提示されることが多く、自分でも平均値だけで判断していた点を反省しました。平均値に加え標準偏差も確認することで、より正確な分析が可能になると考えています。 群ごとに違いは? 市場データを分析する際は、まずヒストグラムを用いてデータのばらつきを把握し、いくつかの群に分けることにしました。各群の標準偏差も確認し、群間での差が出ないよう注意しています。また、各群の平均値や中央値を算出することで、従来の分析との違いを明確にしていくつもりです。

データ・アナリティクス入門

代表値だけじゃ見えない発見

分析の誤りに気づく? データを分析する際、手法に誤りがあると仮説さえも誤ってしまうことを実感しました。代表値だけに頼るのではなく、散らばりなど他の視点にも注目し、分析や加工の方法の知識を豊富に持っておくことの重要性を学びました。 新発見の秘訣は? 業務においては、従来の方法を踏襲することが多い中でも、新たな発見や提案を生むためにはアプローチを変えることが鍵だと感じています。数字の見方一つで、これまで気付かなかった視点や発見があることに気づかされました。
AIコーチング導線バナー

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right