クリティカルシンキング入門

論理とデータで切り拓く変革

本当に原因を掴めた? クリティカルシンキングの動画を通して、問題が起こった際に分析せず「なんとなく」原因を特定し、「とりあえず」の解決策に飛びつくことが非効率であり生産性を下げるという点を再確認しました。 思考の見直しは? 自分の思考偏りや思い込みに気付くとともに、WHAT、WHERE、WHY、HOWといった観点から要素を分解し、数値などの客観的データに基づいて対応策を検討する必要があると実感しています。 前例に縛られている? また、学校内のさまざまな業務では「前例踏襲」や「経験則」に頼る場面が多いと感じています。そこで、問題解決のためには客観的データに基づき、論理的かつクリティカルに考える文化を醸成することが、今の時代にふさわしく、生徒も教員も共に多く学べる環境作りにつながると考えています。 実践はどう進める? 学んだ知識を実践に移すことが重要です。特に、これまであまり取り組んできなかったデータをグラフで示す方法にも積極的にチャレンジしていきたいと思います。 ツールの使い方は? さらに、ロジックツリーを日常の思考訓練のツールとして活用していくつもりです。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

データ・アナリティクス入門

分析の核心に迫る!比較の極意とは?

比較の重要性とは? 分析の本質は比較にあります。比較を行う際には、比較対象の性質が揃っているかに注意することが重要です。例えば、長野県のりんごの生産量と青森県のりんごの生産量の比較は適切ですが、長野県のりんごの生産量と静岡県のお茶の生産量の比較は不適切です。上述の例は分かりやすく示しましたが、ビジネスにおいては見た目上は比較されていても、実際には比較対象が揃っていない場合がありますので注意が必要です。そのため、分析においては、どのようなデータを集めるのか、何と何を比較するのかという前段階が特に重要だと考えます。 顧客満足度データの活用法は? 普段、弊社のサービスに対する顧客満足度の分析を行っていますが、データは十分にあるものの、うまく活用できていない部分もありました。これまで適切な比較ができていたのかを振り返りたいと思っています。 分析チームの新たな取り組みは? 明日は分析チームでの会議があるため、今回学んだ視点「分析の本質は比較であり、比較対象を揃えること」をメンバーに共有します。次の分析においては、比較対象についてメンバー間で共通の認識を持ち、適切なアウトプットに近づけるよう努めます。

データ・アナリティクス入門

3W1Hで切り拓く未来への一歩

3W1Hってどんな効果? 問題解決のフレームワークとして3W1Hを活用する意義を改めて実感しました。現状を俯瞰的かつ体系的に把握し、目指す姿とのギャップを明確にするため、データ分析が効果的であることを再認識しました。また、ケースによってはwhenやwhoの視点で整理することも有効であり、状況に応じた思考のヒントとして柔軟に活用していきたいと思います。 採用数の壁は何? 中途採用業務においては、毎年計画値を下回る採用数が課題となっています。ターゲット像の整理、委託先への伝達、募集要項の調整や条件の見直しなど、さまざまな対策を講じてきましたが、いずれもスポット的な打ち手に留まっていました。そこで、なぜ計画値に達していないのか、3W1Hの観点に加え、採用数をロジックツリーで分解し、各要素ごとに対策を考えるアプローチが必要だと感じました。 課題解決の手順は? この喫緊の課題に対して、まずは自身のポジションから現状を3W1Hで整理し、採用プロセスおよび構成要素をもれなくダブりなく書き起こす作業に着手しています。その上で、社内の会議にて問題提起を行い、具体的な打ち手をチーム全体で検討していく予定です。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

クリティカルシンキング入門

切り口と仮説で視野を広げるデータ分析学び

数値分析の固定概念を超えて 分析とは、数値を分けて検証することと認識していました。固定概念があり、年齢層は10代ごとなど決まったフレームで対応する傾向がありましたが、データによって柔軟に対応すべきと感じました。今後は、様々な切り口で分析を行うことを決めました。ただし、行う量が多すぎると時間ばかり浪費するので、仮説と検証を繰り返し、仮説力を高めるように努めます。 どのように視野を広げる? 数値検証は、どの分野でも必要です。自社においても多くのデータがあるため、切り口と仮説を意識して活用していきます。数値を扱う部署にいたため、頭が固くなっていると感じていましたが、検証を通じて視野を広げようと思います。会社の中でも分析に期待されている声があるので、この研修を活かせればと考えています。 新規業務にどう備える? 部署が変わってから数値検証やグラフ作成の機会が減少していますが、この研修を受けて学び直し、今後の新規業務に備えたいと思います。ミーシーについては知識としては理解していると感じても、実際に行うと漏れやダブりが発生しがちですので、今後は自分の手法が本当に正しいか常に意識して進めたいと思います。

データ・アナリティクス入門

データ分析が変わる、伝える力の育て方

具体例が必要な場合は? 普段分析している視点が言語化されているため、他者にアウトプットする際に考え方を体系的に伝えることができました。しかし、数字に集約するだけでは伝わりづらいと感じ、数学的な話をする際には具体的な事例を出して伝える必要があると気付きました。 データの見せ方を工夫する また、社内で分析したデータの見せ方に関しても工夫が必要だと感じました。ただデータを見せるだけではなく、データから読み取ってほしいことや感じ取ってほしいことを意識して、最も伝わりやすい見せ方を検討する必要性を感じました。 レポート改善の重要性 さらに、社内で発行しているすべてのレポートについて、その目的や従業員に何を伝えたいかを再度見つめ直して言語化することが重要です。この作業を8月末までに行い、言語化した内容に基づいて、より伝わりやすい表現方法や見せ方の改善策を9月末までに検討し、試験的にレポートを作成して従業員からのフィードバックを得る予定です。 フィードバックを活用するには? 最後に、そのフィードバックに基づいてレポートの改善策をまとめ、内容に従って改善を行うことを10月末までに進める計画です。

クリティカルシンキング入門

イシュー特定で成果を最大化!

イシューの意義は? クリティカルシンキングを通じて最も得られた学びは、「イシューを明確にすることの重要性」です。解決策を決定する際にイシューが不明確なままだと、結果的に意味のある成果が得られない可能性が高いと感じました。答えにたどり着くためには、ピラミッドストラクチャーやデータ分析といったスキルを駆使することが効果的であることを学びました。 スキルはどう活かす? これらのスキルは、例えば講演会の企画や医師に対するプロモーション活動計画の作成、チームでの会議、社内メールの作成、上司への活動報告など、さまざまな場面で活用できます。重要なのは、まずイシューを特定してから活動内容を決定することであり、この点を自分自身だけでなく周囲にも意識させていきたいと思っています。 データの切り口は? 業務において、まずは関連データの分析に取り組むことが必要です。データをただ見るのではなく、異なる切り口で分解し、数字から見える問題を明確にします。その上でイシューを特定し、活動内容を決めることが肝心です。さらに、なぜそのような内容になったのか、その背景についても説明を欠かさないように心がけたいと思います。

クリティカルシンキング入門

データ分析で見つける新しい視点

データ加工の効果的な手法とは? データ加工の手法として、合計や割合を算出するための新しい列を加えることで、傾向や特徴を明確に把握できるという利点があります。また、これをグラフ化することも効果的です。 切り口次第で変わるデータ分析 データの切り口次第で傾向や特徴は変化します。そのため、どの切り口でデータを分けるかをしっかり考えることが重要です。さらに、グラフを活用することで、分析結果を視覚的に伝達しやすくなります。 広い視点で進めるデータ分析 データ分析を行う際には、When、Who、Howといった複数の切り口からデータを分解し、分析を進める必要があります。一つの切り口に頼らず、複数の視点から考えることで、より深い分析結果を得られると考えられます。 顧客増加へのデータ分析アプローチ 顧客を増やすためのデータ分析では、これらの手法が役立ちます。データ加工や分け方に基づいた分析結果をグラフで示すことで、発表時に結果を納得してもらいやすくなるでしょう。 新たな知見をどう活かすか? 今回学んだ知見をデータ分析に活かし、様々な切り口からの付加価値のある分析を目指したいと思います。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right