クリティカルシンキング入門

エクセルで広がる!学びの新発見

エクセルとグラフの効果は? エクセルシートの活用方法について学んだことは、非常に奥が深く、多くの発見がありました。特に、データの見える化をグラフで実現することは非常に参考になりました。また、データ分析で迷ったときには、まずはデータを分解してみることが重要であるという点も、教材を通じて反省しました。後半のMECEに関する学びでは、経営戦略のツールとしての利用に関して、どのステップで役立つのか、構成要素を分解して考える視点が大変有益でした。 分析視点の工夫は? これらの学びを基に、大学の在学生や入学生の分析に活用してみたいと考えています。特に、入試ごとの分析視点が不十分であったため、同僚とともにいくつかの切り口を考え、層別や変数の分解を試みるつもりです。また、プロセスを分解し、ペルソナを設定することで、大学進学を考えた段階から最終的な進路決定に至るまでの過程の分析を試みたいです。 広報と全体の関係は? さらに、「全体を定義する」ということの重要性についても意識が深まりました。これまでは、学生がオープンキャンパスに参加し、その後出願するという単純な流れを考えていましたが、実際には学生が興味を持ち始めるタイミングで、どのように大学の認知度や魅力を伝えるかが重要だと感じました。そのため、進学先を決定するプロセスにおける効果的な広報活動の必要性を強く感じています。

クリティカルシンキング入門

問いの力でビジネスを変える!

正しい問いは何? 正しい問いを立てることの重要性を改めて実感したワークでした。Week1で学んだデータの分解やピラミッドストラクチャーは、適切な問いを立てることができて初めて効果を発揮します。イシューを特定することは、一人では難しく、同僚と共同で行うと論点がずれるリスクもあるため、とても難しいと感じました。しかし、「今解くべき問いは何か」を常に意識しトレーニングを続けていくべきだと考えます。 適切なイシューは何? このスキルは、新規サービスやコンテンツ開発、既存サービスの改良にも応用できそうです。業務や事業における課題は多岐にわたるため、イシューを特定するだけでなく、どのイシューに取り組むべきかを決めることが重要です。より本質的な問いを立てる訓練をしていきたいと思います。また、お客様の声から得られる気づきをイシューに結びつけるインサイトに変える能力も向上させたいです。客観的に分析し、一人の視点に偏らないことを常に意識する必要があります。 新たな切り口はどう? 普段行っている顧客アンケート分析において、従来の方法に固執せず、新たな切り口やグラフの選択を検討したいと考えています。さらに、アンケート項目自体の設計も非常に重要だと感じており、実施に移したいです。また、会議では論点を明確にし、その範囲から逸脱しないように議論することを心掛けていきたいと思います。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

データ・アナリティクス入門

現象を超えて問題の根本に向き合う方法

問題原因をどう特定する? 問題の原因を明らかにするためには、プロセスを細かく分解することが重要です。そして解決策を検討する際には、複数の選択肢を洗い出し、その根拠に基づいて絞り込むことが求められます。 幅広く解決策を模索するには? 私の癖として問題と認識している点は、現象に焦点を当ててしまうことです。このため、なぜそれが問題なのかをさらに分解整理し、その構造を明らかにすることが必要です。その上で、解決策を思いつきや経験で狭めてしまわず、幅広く検討し、なぜそうするのが良いのかを考え実行し、分析することが重要であると感じました。 業務改善に必要なフローは? 具体的な業務としては、説明資料の作成や土地の探索、収支検討などが挙げられます。これらの部分で改善を図り、成果に結びつけるためには、業務フローや仕事上のプロセスを整理・分解し、成果に結びつく打ち手を検討し実行した上で、さらに改善すべき点を検討することが不可欠です。 データ活用の重要性とは? また、データを収集する経験を深めることも重要です。日頃から意識的にデータを取ることで、どのようにデータが業務に効果を与えるかを考えることができます。説明資料を作成する際には、作り込みすぎずにスライドのパターンをいくつか作成し、A/Bテストの要領で部内や課内でフィードバックテストを行うことも推奨されます。

データ・アナリティクス入門

着実な一歩が未来を開く

データ分析で何が分かる? 問題解決にあたっては、ステップごとにデータを分析しながら進めることで確実な解決が可能となります。また、様々な仮説を立てて検証することで、多角的な視点を得ることができ、この組み合わせにより、データ分析をより効果的に活用し、最適な解決策を導き出すことができます。 収集条件は統一できる? 自分でデータを収集し、複数の仮説を検証する場合、それぞれの仮説に対応したデータ収集の条件を可能な限り統一することが重要です。既存のデータを比較する際も、比較したい条件以外の要素を揃えた状態で行わなければ、得られる比較結果が本来の目的と乖離してしまいます。 集中が続かない理由は? 一方で、私自身は視野が分散しやすく、さまざまな仮説を考えるのは得意なものの、目的に向かって確実に進むことが苦手だと感じています。そのため、常にゴールへの道筋をステップに区切って考え、1つ1つを着実にクリアしていくことを心掛けるようにしました。これにより、自分の特性を活かしながらも、確実に問題の解決へ向かうことができると実感しています。 目標達成法はどうする? 今後は、さまざまな業務に取り組む前に、まず解決すべき最終目標とそこに至るステップを明確にし、その上で各ステップで仮説を検証しながら前進していくことで、着実に成果へと導いていきたいと考えています。

データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

戦略思考入門

シンプル分析で見える未来

基本の枠組みはどう? 戦略的に考える際、これまで想像していたような高度な分析やフレームワークの活用ではなく、まずはオーソドックスなフレームワークを適切に使いこなすことが大切であると学びました。それぞれのフレームワークで求められる分析の視点や、全体感を持ち偏りなく分析する点、各要素の整合性を保ちながら大胆に仕分けを行う意識が必要だと実感しています。 今後の事業戦略はどう? 自社の中期的な事業方向性を検討するうえでも、この考え方を活用したいと考えています。これまでは「顧客が~だから」「競合が~だから」「自社の強みは~」という議論のもとで方針や取り組みを進めてきましたが、最近のケーススタディを通じて、競合環境が見えづらい業界ならではの難しさを実感することとなりました。今後は、メンバーと議論を重ねながら、各種フレームワークを活用して事業方向性を決定していくつもりです。 3C分析、進め方はどう? まずは3C分析を丁寧に実施します。本講座で学んだように、市場(マクロ)と顧客(ミクロ)をそれぞれ分析し、誰が競合なのかを明確にする点に特に注力したいと思います。自らたたき台を作成したうえで、チーム内で意見を交換し、分析内容を深める予定です。また、分析を進める中で顧客や自社に関するデータが不足する可能性があるため、データ蓄積の仕組みの検討も並行して進める意向です。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

クリティカルシンキング入門

イシューを見抜く成長の軌跡

どうやってイシューを特定する? 進め方としては、まず答えを出すべき問い、すなわちイシューを明確に特定します。その後、論理の枠組みを考え、主張を適切な根拠で支えるという基本の流れを踏むことが重要です。作業を進める中で、イシューを常に意識しながら進めるべきであり、過去にはイシューから逸脱したまま次の作業に移ってしまった経験があり、今後はその点の改善が求められます。 なぜ顧客評価に課題が? また、顧客評価で問題が生じた場合や戦略がうまくいかない状況では、単なる対症療法にとどまらず、根本的な問題が何であるかを特定し、メンバー間で共有することが必要です。特に、エンジニアの方々と仕事をする際には、視点が異なることが多いため、まずは共通してイシューを明確にし、現在の状況と今後の方向性をしっかり合わせることが大切だと感じました。 どうやって情報整理をする? さらに、各顧客ごとにイシューを特定し、現状理解のためにMECEやデータ分析を実施すること、そして顧客との面談前や会議での参加者間のゴール設定が求められます。資料作成の際は、まずデータを整理し、その後報告資料の構成を考え、スライドごとのメッセージを作成していくという流れを守り、順番を変えないように進めることが重要です。会議中もイシューから逸脱しない進行を意識することで、解決策へと着実に導くことができると感じました。

クリティカルシンキング入門

数字の魔法:分解から見える新世界

数字をどう分解する? 数字を分解することで、新たに見えてくるものがある。しかし、どのようにその数字を分解するかによって、見える内容が大きく変わるため、その切り口が重要である。分解のパターンはすぐに思い浮かぶものではないので、日々数字に慣れ親しむことが必要だと感じた。さらに、加工や分け方を考える際には、ある結果が出るだろうといったバイアスを自覚し、数字を見る姿勢を持つことが大切だと考える。また、数値やグラフの見せ方に注意を払い、一旦落ち着いて数字を疑う必要がある。一方で、受け取る側はそのままを信じてしまいがちである。 データはどう精査する? プロジェクトの進捗や品質を分析する際には、単に多い・少ないだけでなく、時間経過での変化といったデータを見る観点も必要であり、これにより状況を正確に把握できるようになる。収集するデータは多いに越したことはないが、多すぎると、メンバーへの負荷やコストが増加するため、取得するデータは十分に精査されるべきである。 問題をどう整理する? プロジェクトにおける問題や課題を整理し、定量的に測れるものをデータ収集の対象とすることが求められる。そして、上司などに説明して自分以外の視点からの意見を取り入れ、多角的に物事を捉えてブラッシュアップしていくことが重要だ。日常生活でもニュースなどの数字に興味を持つ習慣をつけることが大切である。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right