データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

クリティカルシンキング入門

データ分解で見える!思考の旅路

どうやって切り分ける? 物事を分割して考える際、結果が見えないこともありますが、それ自体が「何もわからない」という結果を示しているため、意義はあります。その上で、次の切り口を探ることが重要です。初めの段階では大きく切り分けていく方が良いですが、最初から最適な切り口を見つけることは難しいでしょう。そのため、見つけた切り口からさらに広い視点の切り口を探る往復作業が効果的です。 情報はどう加工する? 情報はまず収集し、それを目的に応じて変形させることが重要です。そして、それに基づき次に進むべき方向を考えます。例えば、自社と他社の比較や、今年度の新人の離職や休職の状況を把握し、施策についての成果を確認します。研修後の全体的な理解度や企画時の要因分析、アンケートの結果整理なども同様に重要なプロセスです。 研修後はどう比較する? 特に今年度の新人の離職・休職については、理由別にデータを収集し、昨年度と比べて施策の効果を評価します。また、研修後の理解度把握では、各個人の研修中のデータを整理し、現場配属後の成果と結びつけ、成果が出ている人とそうでない人との違いを比較することが求められます。

データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right