クリティカルシンキング入門

なぜを解き明かす成長術

なぜイシューは難しかった? 今週のテーマは「イシューを捉える」でしたが、これまでの学びの中でも特に難しさを感じました。これまでは、解決したいこと=イシューと捉えがちでしたが、今回、まず解決したい目標を前提としてデータを分析し、根本的な問題を洗い出すことが効果的だと学びました。 具体と抽象はどう使う? データを細かく分け、一つ一つ検証する過程で、week1で学んだ具体と抽象の考え方が役立ち、これまでの知識の総合によって初めてイシューを正しく捉えられると実感できました。 なぜ修正時間が増える? 自身の業務では、開発プロジェクトの工数見積もりにおいて、簡単な修正にもかかわらず、なぜ時間がかかってしまうのかという疑問が生じることがよくあります。修正作業や影響確認、テストに要する時間で終わらせがちな現状を踏まえ、それぞれの問題について「なぜ」を追求していく必要性を感じています。 解決策はどう見出す? それぞれの問題に対する具体的な解決策が見つかれば、プロジェクト全体の必要期間が短縮でき、恒久的な改善策が確立されれば、将来的なプロジェクトもこれまでより短い期間で進めることが可能になるでしょう。 論理的思考の進め方は? 今後も、問題に対して論理ツリーのように「なぜ」を分解し、根本課題および効果的な解決策を模索する姿勢を持ち続けたいと思います。今週の総合演習では思考にかなり頭を使い疲労を感じましたが、このプロセスに慣れ、考える場面を増やしていくことが成長に繋がると考えています。

アカウンティング入門

BSで読み解く企業成長の極意

BS評価の基準は? BSに関してネット上では一般的に良いとされる比率や割合が存在するとされますが、業種ごとに大きく異なるため、一概に評価できないと感じました。企業がどのような状態を目指しているのか、その規模に対して適切な水準かどうかが重要です。 流動資産の安全性は? たとえば、流動資産の割合が高い場合、短期的な支払い能力が高く安全な経営と考えられます。一方、固定資産を活用して収益を上げる企業では、充実した固定資産が効率的な稼ぎに結びつき、参入障壁が高いため長期的な経営の安定が期待できると感じます。 無借金が本当に良い? また、無借金経営が必ずしも最良の戦略とは言えません。利益剰余金や出資が原資となるため、成長するための投下資金が限られてしまい、結果として成長速度が遅くなる傾向があります。企業の規模に合った適切な借入を行い、戦略的な投資を実施することが成長に繋がると考えました。 理想BSの在り方は? 自社のBSの現状が本当に理想的な状態なのか、また理想とするBSの割合がどのようなものであるかを改めて検討する必要があります。たとえば、利益率が高く、短期間でリスクの低い投資案件があった場合には、借入をしてでも投資するという経営判断が望ましいでしょう。事前に会社規模に基づいた許容可能な借入額を算出し、そのような案件が出た際に迅速に判断できる体制作りが大切だと思います。 意見は何でしょう? 他の受講生の皆さんが、どのように業務に当てはめ、考えているのか意見を伺いたいです。

データ・アナリティクス入門

仮説で広がる学びの世界

仮説の意味は? 仮説について、「結論の仮説」と「問題解決の仮説」という2つの種類があることを学びました。普段何気なく使っていた「仮説」という言葉について、自分はどちらの立場で話していたのだろうかと振り返る貴重な機会となりました。また、仮説を考える際には、決め打ちせず複数の可能性を探ることや、さまざまな切り口から網羅的に考えることの重要性を再認識しました。さらに、データ収集においては、必要なデータだけでなく、仮説に対する反論を排除するために比較対象となるデータも意識的に集めるべきであるという点が印象に残りました。 3Cと4Pの使い分けは? 業務では、Customer/Competitor/Companyの3C分析を中心に行っていましたが、細かいサービス検討の場面では、Product/Price/Place/Promotionの4Pも活用していく必要性を感じました。特に新規事業の商品検討にあたっては、4Pの視点からより具体的な検討を進めたいと思います。 問題解決の手順は? また、問題解決のプロセスとして、What、Where、Why、Howの順で考えることの重要性を学びました。これまでどうしてもHowから着手してしまう癖があったため、今後の学習期間内に、残りのプロセスもしっかり取り入れるようにしていきたいと考えています。 検証との連携は? 最後に、仮説と検証はセットで考え、事前の準備や仕込みを徹底し、比較データなどを用いた適切なデータ収集ができるよう努めたいと思います。

データ・アナリティクス入門

振り返りから見える未来への一歩

原因はどこで? 問題の原因を探る際には、まずプロセスに分けて考えることが重要です。どの段階で問題が発生しているかを明確にするため、原因を細分化し、全体を俯瞰することが効果的です。一概に「どうすれば良いか」を変えるのではなく、判断基準に基づいて選択肢を絞り込むことが求められます。 解決策は何で? 解決策を検討する場合は、複数の選択肢を洗い出し、その中から根拠をもって最適な方法を選び出すプロセスが必要です。目的と仮説の設定、実行、結果の検証と打ち手の決定という流れをしっかり踏むことで、効果的な改善が可能となります。検証項目やテスト要素は一要素ずつ実施し、他の環境要因の影響を避けるために、同じ期間内での実施が望ましいです。 A/Bテストの真意は? また、A/Bテストはシンプルで運用や判断がしやすく、低コストで少ない工数、さらにリスクを抑えた状態での改善が期待できます。テストの目的や仮説を明確にし、数値化できるデータを用いることで、検証プロセスがスムーズに進み、次の仮説や決定へと繋がります。 ボトルネックの所在は? さらに、問題のボトルネックを考える際は、問題を発見するために「何が問題なのか」「どこで発生しているのか」「なぜ問題が起こっているのか」を多角的に検討し、プロセス全体を整理することが重要です。たとえA/Bテストがシンプルであっても、同条件に揃えることが難しい場合は、具体的にどの要素が影響を及ぼしているのかを洗い出し、最適なテスト方法を選択する必要があります。

リーダーシップ・キャリアビジョン入門

心を動かす対話の軌跡

自己評価の段階は? 面談の際は、最初に相手に自己評価を語っていただきます。たとえ自己評価とこちらの期待との間に大きなギャップがあった場合でも、まずこちら側に改善すべき点がなかったかを検討し、必要ならば素直に謝罪します。その上で、相手の感情に十分配慮しながら、評価の根拠を論理的に説明します。さらに、今後の改善策や取り組みを共に考え、前向きな思考へと導くよう努めます。このために、入念な準備が不可欠です。 面談手法の工夫は? また、この面談手法は、各部署の部長やチーム長との対話でも活用されます。期首の目標設定面談では、相手への期待を明確にし、双方が納得できる形で目標を設定します。その際、たとえ長期間同じ組織に所属している場合でも、相手のキャリアアンカーや価値観に変化が生じている可能性に配慮することが重要です。 フィードバックはどう? さらに、期中や期末の振り返り面談においては、まず相手に自己評価を述べてもらい、その後、相手の感情にしっかりと向き合いながら、適切なフィードバックを実施して評価を共有します。このプロセスは、面談相手のモチベーションを維持・向上させるために必要不可欠です。また、万が一支援体制に不備があった場合は、双方で検証し、改善に取り組むことも大切です。 戦略共有の理由は? さらに、面談を行う際には、事前に戦略を立案し、同伴する幹部ともその戦略を共有しておくことが効果的です。これにより、関係者全員が一丸となって建設的な対話を進めることが可能となります。

アカウンティング入門

ビジネス視座と実践スキルの両立: 私の学びの振り返り

どれだけ役立ったか振り返る 講座全体を振り返ることで、自分の「ありたい姿」を再確認し、本講座がどれだけ役立ったか、またアカウンティング以外で必要となるスキルやマインドを考える貴重な機会となりました。特に、「ありたい姿」として掲げたベンチャーマインドを高めるためには、ビジネスを俯瞰的に見る力や概念化するスキルが重要であることを実感しました。また、英語のオンライン授業も継続し、ただ受講するだけでなく、次の授業で言えなかったフレーズが言えるようになるなどの具体的な取り組みを続けていきたいと考えています。 次のアクションをどう選ぶ? 自分の「あるべき姿」を実現するためのマインドセットや今後のアクション(Next Action)として活用していきたいと考えています。具体的には、アカウンティングに関しては競合分析や自社の財務諸表を確認できるようになりたいです。その際には、必ず実際の例を取り上げて学びを深めていきたいと思います。また、ビジネスマインドを高めるために、参考書籍やグループディスカッションを活用し、より高い視座を持つことを目指します。 学びをどう進めていくか アカウンティングに関しては、この期間で一通り終わらせる意志があります。また、ブランドプランやキャッシュフロー計算書についても興味があるため、利用可能な最後の日までしっかりと学習を進めていきたいです。会社のフレームや自己流ではなく、学んだ方法でBrand Planを作成し、理解をさらに深めることを目指します。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

データを分解して新しい発見を得る方法

少ないデータを分解する方法は? 少ないデータを最初に見たとき、「わかることが少ない」という印象を持ちました。しかし、データを分解して考えることで、新たに見えてくる情報があることを実感しました。求める情報に対して、適切な分解方法を考えることができるようになったと感じています。 新しい気付きが得られない時の対処法は? また、分解しても新しい気付きが得られない場合でも、それは失敗ではなく、新たな学びであるという考え方に勇気をもらいました。この経験を経て、MECEを意識してデータ全体をさまざまな視点から分析し、手を動かして新しい情報を得ることを心掛けています。 具体的には、顧客データを分析し、仮定していたペルソナとのギャップを発見したり、イベントの参加アンケート結果を基に告知と実際の内容の違いを分析したりしています。また、施策の結果を数字だけでなく、さらに深く分解し新たな情報を提示しつつ判断しています。データを他のチームに依頼する際には、目的や期間を明確に伝え、無駄なデータのやり取りを減らすことを意識しています。 どんなデータが必要か整理するには? 「どんなデータがあれば知りたい情報が得られるのか?」をまず整理し、実際に手を動かしてデータを分解しグラフ化することで、多くの新たな発見が得られます。アンケートを行う際には、逆算して負担を軽減する項目や回答方法を検討し、Excelなどの利便性の高いツールを活用して効率的にデータを見られる環境を整えています。

リーダーシップ・キャリアビジョン入門

あなたも踏み出せる一歩

欲求の変動はなぜ? 人のモチベーションは、生理的欲求、安全・安定性欲求、社会的欲求、承認・尊厳欲求、そして自己実現欲求という5つの段階に分かれ、時とともに変化していきます。 X理論とY理論の違いは? また、X理論では、人は基本的な生理的欲求や安全欲求を最優先するため、指示命令的なマネージメントが有効だと考えられます。一方、Y理論では、人は段階を経て高度な欲求を持つようになり、サポートや寄り添いを重視するマネージメントが求められるとされています。 衛生要因と動機付けは? さらに、モチベーションには衛生要因と動機付け要因の2軸が存在し、それぞれが独立して影響を与えます。 どう承認の環境は整う? メンバーの能力や性格を理解した上で、動機付け要因による承認欲求を満たすためには、成長できる環境を整え、各自の目指す姿や意向をしっかりと聞き出し、目標を設定することが大切です。適切な目標設定は容易ではありませんが、寄り添う姿勢を忘れずに行動し、振り返りの重要性を理解した上で、評価時のフォローが次の目標へのモチベーション向上につながるよう努めたいと考えています。 時間の取り組みはどう? また、時間に追われ短期間の成果を期待しがちですが、長期的な目的をメンバー全員で共有し、時間に余裕を持って取り組むことが必要です。成長の速度や動機付け要因に個人差があることを相互に理解し、集団全体の力を高めることを前提に進めていきたいと思います。

戦略思考入門

選択と集中が生む、企業変革の鍵

慣例を捨てる意識を再確認 事業や業務において「捨てる」ことは、「慣例」や「定型」に拘らないことだと意識していましたが、今回の学習を通じて無意識のうちに「慣例」や「定型」に捉われていたと気づかされました。個人で「捨てる」ことは容易ですが、組織として「捨てる」ことは意識的に取り組む必要があり、論理的なストーリーを立てて進める必要があると再認識しました。「ムダじゃない?」や「意味はない」では他の社員は納得してくれず、腹に落ちないことを肝に銘じておきたいと思います。 プロジェクトへの想いと捨てる決断 IT業界では参画したプロジェクトに長期間携わることが多く、顧客やプロジェクトに対する想いが強くなりがちです。事業領域を選択と集中(捨てる)する際には、参画メンバーの心情も考慮する必要がありますが、メンバーの意識や想いを重視することはできません。トレードオフを念頭に置きながら、検討・計画・実行していきたいと思います。また、客観的な判断を行うために数値をベースにして取り組んでいく必要があります。 トレードオフの検討にどう向き合う? トレードオフを検討するにあたり、売上高や利益、一人当たりの売上高や利益、投下コストなどの生産性指標を把握し、社員にも示せるように準備を進めます。数値をベースに社員の意見も取り入れた上で判断し、上層部への提案を行っていくつもりです。現在、中期計画や短期事業計画の策定に携わっており、事業領域の検討にこれらを取り入れて進めていきます。

データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

「期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right