マーケティング入門

買いたくなる製品づくりの秘訣

マーケティングとは何? マーケティングという概念について、動画で「顧客に買ってもらえる仕組み」を作るという定義が印象的でした。非常に広い意味を持つことを実感し、その具体例をいくつか考えてみました。 製品開発のポイントは? まず、顧客にとって魅力的な製品作りが基本であると感じます。製品そのものの魅力がなければ、どんなアプローチも意味がなく、かつ製品開発には複数の部門が関わるため、全体としてのバランスを意識する必要があります。 伝え方はどうする? 次に、魅力ある製品の良さをどう伝えるかが重要です。たとえば、使いやすさや生産性向上といった具体的なメリットが、顧客にとって刺さるポイントとなっています。 アピール場所はどこ? また、いかにしてその魅力を伝えるかだけでなく、顧客の目に留まるアピール場所の確保も欠かせません。展示会や専門誌、さらには自社メディアやSNSなど、多様な情報発信手段を活用することで、さまざまな顧客層にリーチできると考えています。動画配信サービスやブログ形式での情報発信も、後から情報を探しやすい点で有用だと感じました。 営業対応はどう? さらに、顧客と直接接する営業やサービススタッフの印象も大きな役割を果たします。彼らの対応次第では、顧客の印象が大きく左右されるため、教育や評価制度の充実が求められます。 技術だけで満足? 私自身は商品開発を専門としていますが、つい「優れた技術だから買ってもらえる」という考えに陥りがちです。しかしながら、顧客像をより深く掘り下げ、具体的なニーズや販売規模を明確にすることこそが、成功する製品開発への鍵だと再認識しました。 情報漏洩対策は? 現在、工場向けの製品の企画開発に携わっています。企画から市場投入までにはおよそ2年の期間が必要です。企画段階から実際のユーザーの意見を取り入れ、使い勝手をより良くするための相談を進めたいと考えていますが、現状、社内にターゲットユーザーが存在しないため、ユーザーと直接情報共有する際には、同業他社への情報漏洩というリスクが伴います。この状況に対して、外部からターゲットユーザーを取り込み、秘密保持契約などを結ぶといった打ち手以外に、どのような方法が考えられるか、今後の課題として模索しているところです。

アカウンティング入門

数字が伝える成長のヒント

事業の価値は何? 事業活動は業種によって異なるものの、「顧客の視点で価値を提供するために活動する」や「リソース調達のための資金調達」という基本的な考え方はどの事業にも共通していると学びました。また、事業が順調に運んでいるかどうかは、会社の数値を多角的に見ることで判断できると感じました。成長性、生産性、将来性といった指標に加え、従業員のエンゲージメントが数値に間接的に影響するため、企業の状況を正確に把握するためには重要な要素となります。 数値はどう見極める? PLでは収益と費用のバランス、BSでは資金の調達状況、CFでは一定期間のお金の増減状況が重要視されます。これら3つの指標が揃うことで、事業の生産性や安定性、将来性を網羅的に理解でき、それぞれの情報が互いに補完し合うことも納得できました。また、利益余剰金が純資産に組み込まれることで事業が拡大し、資産が企業の安定性を示す指標となる点も印象に残りました。 知識はどう広がる? 部下への研修の際には、アカウンティング用語を噛み砕いて説明できるように意識する必要があると感じています。具体的には、PLやBSのどの部分を見て何を把握すべきか、そこからどう業務改善に結びつけるかまで提案できるようにすることが求められます。会社の数値を年単位、月単位、日単位と幅広く把握し、必要な要素を抽出、継続的に情報をチェックすることで、上司や部下と数値を通じた対話が可能になると考えています。さらに、自身の資産、収入、支出を数値化し、課題を明確にして家計をマネージメントする力も養いたいです。 課題はどこに? 現状の知識でPLの理解を深めるため、まずは自社のPLを用いて違和感のある数値を洗い出し、現時点で考えられる課題を書き出すことが第一歩です。その上で、分からない用語や不明点を整理し、アカウンティングの講義を受講して疑問を解消していくことが重要だと思います。また、部下への教育の際には、自分が分かりやすいと感じた用語の解釈や表現をメモしておき、積極的に活用するよう心がけます。さらに、私生活でも家計簿をつけて収入や支出を把握し、数値に基づく管理方法を実践することで、数字に対する苦手意識を改善し、事業活動に対する感覚を養っていきたいと考えています。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

戦略思考入門

未来を切り拓く学びと挑戦

学習の振り返り:得た知識は? これまでの「戦略思考入門」の学習を振り返り、思考整理、アウトプットの方法、ビジネス構造についての知識を得ることができました。 現代のビジネスリーダーに必要なスキルとは? WEEK06のLIVE授業でも、激変する時代の中で今後のビジネスリーダーに求められるスキルとして「コンセプチュアルスキル」と「ビジネスフレームワークの活用」が重要であると話されましたが、これらの点が講座受講の動機となっています。 新人時代の経験と今の実感 新人時代は抽象的な概念で物事を考えることができず、実務をただこなす日々でした。しかし、自身の経験が積み上がってきた今、「コンセプチュアルスキル」の重要性を実感しています。また、抽象度の高い概念を具体化して伝えるためにはビジネスフレームワークが有効であることも学びました。各フレームワークの目的や用途を理解し、結果に結びつけるツールとして活用できるレベルを目指しています。 言語化スキルの成長は? 言語化・文章化するスキルも力不足だと感じていましたが、講座期間中に考えをアウトプットする機会は良い鍛錬となりました。 自社の事業分析へ挑戦するために 今回の講座で学んだフレームワークを用いた自社の事業分析にも挑戦したいと考えています。これまではマーケティングや競合分析にあまり注力されていなかったため、SWOT分析やバリューチェーン分析などを実践し、新しい収益の柱となる新事業提案につなげられたらと思っています。 社内研修の目的は? さらに、社内の人材研修でフレームワークを用いたグループワークを企画中です。若年層や中堅層に向けて、自社のサービスに対する理解を深め、他社や業界の動向にも視野を広げ、互いの意見を交換しながら分析作業の面白さを伝えることが目的です。 ビジネススキル強化のためのアプローチ 社内研修への活用については、既に企画検討中の研修にフレームワークの分析を取り入れ、ビジネススキルの強化を図りたいと考えています。具体的には3年目、6年目の社員に向けて、ビジネスフレームワークを通じてリーダーマインドを養い、自社のサービスを自分たちの手で構築する意識を持ってもらうことを目指しています。

リーダーシップ・キャリアビジョン入門

学びの軌跡が未来を照らす

本当に大切は何? 偶然、自分が仕事で何を大切にしていきたいのかを自問する機会があり、明文化された項目も違和感なく受け入れることができました。しかし、考えた結果を実際に行動に移すためには、内面と外部からの両方のきっかけが必要であり、相応のエネルギーを要すると感じました。したがって、来たるべき時に備え、平時からじっくり考え認識しておくことが大切だと思います。 キャリア成長の秘訣? また、キャリアをデザインして行動を起こす過程には、その後の生き抜く期間があり、その中で新しい発想や取り組みを身につけるという考えがありました。現在の自分はまさにその段階にあり、日々の業務と本講座での学びから得られるものを、どれだけ自身の成長に繋げられるかを意識していきたいと考えています。 フィードバックは必要? さらに、過去の経験から、能力不足が原因であってもフィードバックなしに業務を任された時の徒労感やモチベーション低下を痛感しました。相手に応じたフィードバックと次の課題設定は、上司と部下双方にとって重要であると実感したため、日常的なコミュニケーションを通して相手との関係性を構築していくことが必要だと感じました。 部下の動かし方は? キャリアアンカーの自覚とキャリアサバイバルの理解は、自身のキャリアはもとより部下のモチベーション管理にも有効であると考えています。チームメンバーのやる気の源泉を把握し、プロジェクトがどのような方向に進むかを予測するための知識やマインドも、アドバイスの一環として備えておきたいと考えています。まずは、日常のコミュニケーションを通じてそれぞれの考えを理解し、業務を通して仕事の進め方や特性を把握。得た情報をどのように活用するか、体系的な理論やそれに沿ったキャリアパスと照らし合わせて自分なりの意見を持つことが大切だと感じました。 リーダーの見る目は? 私は小規模なグループのリーダーとして、メンバー一人ひとりの顔や仕事ぶりを把握しやすい環境にあります。そのため、大規模なプロジェクトのトップを経験された方が、全員を細かく見ることが難しい中でどのような点に注意し、メンバーのマネジメントを行っていたのかをぜひお伺いしたいです。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

リーダーシップ・キャリアビジョン入門

部下との壁を超える柔軟指示

状況にどう適応すべき? リーダーシップの変遷を学ぶ中で、現在は条件適合理論が最も適していると感じています。この理論の代表例であるパスゴール理論では、環境要因と適合要因の観点から、部下が直面している業務内容や、相手に合わせたサポートが求められると理解しました。つまり、状況に応じた柔軟なリーダーシップが重要であると学びました。また、リーダーシップは4種類に分類されることも学びましたが、細かいパターンにこだわるより、置かれている状況に応じて柔軟に対応する姿勢が現場では大切だと感じました。さらに、リーダーシップをどのように発揮しているかを診断する手法として、マネジリアルグリットがあることも知りました。これは、人と業務の2軸で各9点満点を基準に診断し、両面で高得点を目指す考え方です。 部下との向き合い方は? 上司として部下と向き合う場面では、まず部下が担っている業務内容や必要なスキル、そしてその業務がどのような相手に対して行われているのかを把握することが不可欠だと実感しています。その上で、支持的な行動を取るべきか、あるいは任せる行動を取るべきか、状況に応じて判断しています。しかし、優秀な部下の場合、過去の実績から「この業務も十分できるのでは」と判断しがちであり、また部下自身も「できない」と言いにくい側面があるため、すべてを的確に判断するのは難しいと感じています。こうした点から、部下とのコミュニケーションをさらに深める必要性を強く感じました。 成果にどう繋げる? これまでの経験から、多くの場面で的確に指示を出すことができ、どこまで任せるかの判断も多少はつくようになりました。しかし、近年のビジネス環境では、どんなに優秀な部下であっても必ずしも期待通りの成果が出るとは限らず、必ずしも明確な解決策が用意できるわけではありません。そのため、部下に対して明確な指示を出すのが難しくなっている現状を痛感しています。また、短期間で成果を求められる中で、部下に考えさせ成長を促すためのコーチングに十分な時間が取れなくなっていることも大きな悩みです。こうした現場での課題について、皆さんと一緒にどうすれば部下の成長と成果に繋がるか、意見を交換しながら考えていきたいと思います。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。

データ・アナリティクス入門

ありたい姿が未来を創る

どんな姿勢を学んだ? 今日の講義では、「ありたい姿」と「あるべき姿」という言葉について学び、これまで抱いていた違和感が解消されるとともに、それぞれの考え方の意味合いを深く理解することができました。従来は「あるべき姿」が義務感に基づいてマイナスな感情を呼び起こすのに対し、「ありたい姿」は前向きでプラスの感情を生み出すと感じていましたが、講義ではどちらも問題解決につながる点が強調されました。具体的には、あるべき姿はマイナス視点から目標に対処する解決策であり、ありたい姿は現状を肯定する0視点からの解決策であるという考え方でした。 数値が示す意味は? また、目標と現在の間に生じるギャップを数値化することの重要性にも気づかされました。今回の事例では、売上にギャップが見られたことから、目標そのものがどれほど精緻に設定され、何のために存在するのかを問い直す必要性を実感しました。数字による分析を通じ、抽象的に捉えがちな現状を具体的に把握する手法が、分かりやすい課題伝達につながると感じています。 問題をどう具体化? さらに、ロジックツリーを活用して問題を具体化し、各変数を特定するプロセスの重要性も学びました。これまで漠然と理解していた内容を明確に分解し、比較検討することで最終的な解決策を導くための土台が整うと実感しました。実際の分析は、具体化・分類・比較を意識することで効果的に進められることが分かりました。 顧客への提案は? お客様の問題解決に向けた提案においては、彼らが目指す姿勢が「ありたい」か「あるべき」かを正確に把握しながら対話することが大切であると感じました。企業の場合、あるべき姿の実現は緊急度や優先度が高く、迅速な対応が求められる一方で、ありたい姿の実現は長期間にわたる質の高い取り組みが必要な場合が多いです。そのため、状況に応じたアプローチの使い分けが鍵となります。 戦略の視点は? 最後に、営業戦略を策定する際の分析の切り口についても考えさせられました。企業規模や自社シェア、業界内での立ち位置といった観点から仮説を立て、良い切り口と悪い切り口の違いを見極める方法について、今後さらに検討していきたいと思います。

デザイン思考入門

戻る勇気で生み出す革新の軌跡

テストで何を見極める? デザイン思考の最終ステップである「テスト」は、共感、課題定義、発想、試作というこれまでの流れを総仕上げしながら、各プロセスに戻るための道筋を示す重要な工程です。この段階では、試作に盛り込んだアイデアの充実度、課題定義の妥当性、そして初期の共感がどこまで実現されているかを議論します。状況に応じて、必要な工程に立ち返ることができるため、非線形的なアプローチの入り口とも言えます。 なぜ戻るが大切? 一般には「戻る」という作業は嫌われがちですが、デザイン思考を活用して何かを実現するためには、このプロセスが非常に大切だと感じています。初めからプロジェクトメンバー全員がその重要性を共有していれば、スムーズに進められるのではないかと思います。 システム開発の難しさは? 私の仕事であるシステム開発では、各ステップが線形に進む必要があるという制約があり、各工程ごとに承認や同意が求められます。一見するとデザイン思考とかけ離れているようにも思えますが、今回の学びを通じて、デザイン思考は全体を俯瞰するだけでなく、一部分の課題に対するアプローチとしても有効であると実感しました。特に要件定義の期間にデザイン思考を集中的に取り入れることで、その後の設計やシステムテストの工程に悪影響を及ぼすことなく、より効果的な成果に結びつけることができると考えます。 新規案件でどう活かす? 現在手掛けている新規案件では、顧客側からの提案依頼がまだ明確ではないため、この段階でデザイン思考を活用できる可能性を感じています。顧客を巻き込み、共感のポイントを洗い出し、適切な課題定義に結びつけることができれば、その後に弊社側で発案する解決策との連携も取りやすくなり、システム完成後の効果がより実感できるはずです。一方で、試作段階については、単なる操作画面のスライドショーでは伝わりにくいという過去の経験もあり、工夫が求められると感じています。また、システム開発においては試作にかかるコストも課題となるため、これまでの経験を活かしながら、デザイン思考をうまく取り入れてより良い課題解決へ繋げていきたいと思います。

戦略思考入門

選択と集中で未来を切り拓く方法

定量だけで良いの? 企業で働く私たちにとって、企業方針に沿った売上と利益の追求がビジネスの本質だと考えています。しかし、定量的な側面だけで意思決定を行うのは不十分で、多面的な視点から評価し、定量情報と定性情報を組み合わせることで、最適な意思決定を行う必要があります。その判断が正しかったかは実行後の結果からわかるため、短期間での振り返りと必要に応じた修正が重要です。 何を優先すべき? 「取捨選択」や「選択と集中」を常に意識していますが、改めて重要なのは、何を優先すべきかに注力することです。時にはビジネスの慣習に囚われず、思い切って無駄を省くことの重要性を再確認しました。期の節目には活動を振り返り、評価が厳しいものについては、その継続や中止をプロとコンスで整理してみることも良い方法だと思います。 具体的な施策は? 最近の具体的な捨てる施策としては、2024年10月から一時的に自社製品単体でのウェビナー開催を中止しました。顧客獲得が鈍化し、稼働対効果や費用対効果が合わず、メンバーのモチベーションも低下したためです。代わりに、複数の製品を組み合わせたセミナーイベントを企画し、顧客にとって魅力的で価値あるコンテンツを提供していきます。 新たな接点を見つける? また、リアルセミナーでは、顧客と営業担当との新たな接点を作る目的を設定し、単なる顧客獲得にとどまらないゴールを目指しています。PDCAサイクルを回しながら、必要ないものを捨て、継続すべきものや改善が必要なものを見極めて取り組みます。 今後の計画は? 年末を迎えるにあたり、チームメンバーには現在の業務を見直させ、過去の延長にある業務を棚卸しするよう指示し、2025年度からは取捨選択した新たな活動に取り組む予定です。2025年1月から実施する新たな代替策の成果を、稼働対効果や費用対効果、顧客獲得や売上の視点から評価し、それを2025年4月からの新しい活動方針に活かしていきます。そのため、管理者と中期的視点で戦略を練り、ゴールを設定し、2025年3月までにチーム全体に浸透させる計画を進めています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。
AIコーチング導線バナー

「期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right