クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

戦略思考入門

経済性で実感する現場の知恵

固定費削減の秘訣は? 固定費削減の方策として、規模の経済性、習熟効果、範囲の経済性という三つの概念を学びました。それぞれの考え方が、企業活動の異なる側面においてコスト低減に寄与する点が印象的でした。 規模の経済性をどう考える? まず、規模の経済性は、特定の製品における固定費の削減に有効ですが、メーカーの場合は生産設備の稼働率にも注意が必要です。例えば、汎用品のように大量生産が求められる製品に適している一方、当社では少量生産で高機能な材料の開発を目指しているため、その効果はある程度に留まると考えています。 習熟効果はどう活かす? 次に、習熟効果については、生産量が増えるにつれて単位当たりのコストが下がるという現象を指します。私が関わっている化学メーカーでは、生産期間が延びることで生産技術が向上し、結果としてコスト改善につながっていると感じました。ただし、市場環境の変化、たとえば競合他社の参入や市場縮小に伴う価格競争となった場合、習熟効果による製造費用の低減が必ずしも利益に直結しない可能性もあると考えます。 範囲経済の活用はどう? また、範囲の経済性は、会社が保有する情報、顧客、技術などの資源を他事業でも活用することで、単独で行う場合よりも効率的にコストを削減できる効果です。当社では、各部署間での情報共有や人材の配置転換が進められており、個々のスキルや経験を新たな部署で活かすという点で、この理論が実践されていると感じました。しかし、一部では新たな考え方を柔軟に受け入れる一方で、個人の意見に固執する傾向もあるため、部署間の連携強化にさらなる工夫が求められているように思います。 未来戦略は何が必要? 今後は、同じ分野で新規事業を検討している他部署との情報交換を積極的に行い、範囲の経済性をより一層効果的に活用することが重要だと考えています。また、規模の経済性と習熟効果に基づいた戦略は、開発した製品の価格設定にも反映させるべきで、短期的な視点に偏らず、中長期的な販売量や価格の動向を予測した上で、適切な価格決定を行うことが大切だと感じました。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

データ・アナリティクス入門

標準偏差と仮説思考で業務改善を実感

標準偏差をどう使う? 分布やばらつきに気をつけることは、これまでの業務でも意識していましたが、標準偏差という形で数値化できる点は新しい発見でした。これまでグラフなどで傾向やトレンドを可視化する手法は行ってきましたが、標準偏差を用いて数値で比較することは新しい視点でした。これを身につけるために、現在の業務の実例に落とし込み、実践していきたいと考えています。 仮説思考をどう改善する? 仮説思考について、常に意識はしているものの、今週の学習を通じて、自分に仮説の引き出しが少ないことや、自分に都合の良い仮説を作りがちであることを実感しました。これらを改善する方法として、同じ事象を分析する際も常に2つ以上の仮説を立てることをマイルールとし、少なくとも当講座期間中は意識していきたいと考えています。 予測に役立つプロセスは? 四半期ごとの目標を追いかけている環境にあり、週次や月次での予約動向、今後の動向予測などに触れる中で、週次の動向分析時に数値が良い(または悪い)理由を考える際には、Week2で学んだWhat,Where,Why,Howのプロセスを踏んで複数の仮説を持つことを意識していきます。例えば、直近の予約動向が落ち込んだ場合には、「仮説1: 地震の影響」、「仮説2: 地震の影響ではないかも?」というように、あえて真逆の仮説も立ててみるなど、自分の経験や感覚に寄らない形での複数の仮説出しを行っていきたいです。 新しい視点をどう取り入れる? 以上の点を意識していく具体的な方法としては、以下の点があります。 - **複数の仮説出し**:同類の仮説のほか、あえて逆の仮説も立ててみる。 - **標準偏差の活用**:数値化の感覚がないため、これまでに利用してきた分布図などを用いて数値化するとどう見えるかを実践してみる。複数の事例で行い、数値の見え方を感覚的に掴み、実戦で利用できるようにする。 これらを日々の業務で実践し、新しい視点や考え方を自分のスキルとして取り入れていきたいと思います。

マーケティング入門

営業店の心を掴むバックオフィス戦略

マーケティングの本質とは? マーケティングの基礎的な役割について学び、特に「マーケティングの役割は販売の必要性をなくすこと」という考え方が印象に残りました。これは、顧客が自然と商品やサービスを選びたくなる仕組みを作ることがマーケティングの本質であり、単なる営業活動の補助ではなく、顧客との信頼や価値提供を通じて成り立つものだと理解しました。また、「マーケティングとは顧客に買ってもらえる仕組みを作ること」という視点も重要で、単純な売上増加ではなく、顧客が求める価値を見極め、それをいかに提供するかが鍵であると感じました。 バックオフィス業務の新たな視点 私は現在バックオフィス業務を担当しており、営業店のフォローや業務効率化、工数削減を主な役割としています。そこで学んだマーケティングの考え方に基づいて、バックオフィス業務も営業店に「選ばれる存在」になることが重要だと気づきました。具体的には、営業店にとって我々のサポートが単なる補助ではなく、「これがあるから安心して営業活動に集中できる」と思ってもらえる仕組みを作ることを目指したいと考えています。そのためには、営業店が抱える課題やニーズを深く理解し、業務の「良さ」や価値を適切に伝える方法を考える必要があります。 知識をどう実践に活かす? マーケティングの知識を実践に活かすためには、まず仲間との反復的な共有を行うことが有効です。例えば、学んだことを週次で共有するミーティングやディスカッションを通じて、自分の業務にマーケティングの考え方を落とし込む練習をしています。また、6週間という限られた期間で「予習」と「復習」のサイクルを構築し、学んだ単語や知識を確実に定着させることを意識しています。さらに、具体的な行動として営業店とのコミュニケーションを増やし、現場で必要とされるものをヒアリングする機会を設けたいと考えています。その情報を基に、魅力を感じてもらえるような提案や支援を行い、バックオフィスの存在価値を高めていきたいと思っています。

データ・アナリティクス入門

ファネル分析で未病市場に挑む理由

数値分析の極意は? 数値分析では、プロセスごとに「率」にして検討することが有効です。A/Bテストは、同期間にランダムにユーザーを振り分け、その結果を比較する方法で、比較ポイントを絞ることが大切です。AIDAやAMTUL、AISASなど、プロセス設定に利用できるフレームワークは多様に存在します。また、ダブルファネルという概念もあります。これは、購買までのファネルと、購買後に他社に影響を与えるファネルが存在し、1人の顧客がその後の影響力で10にも100にもなる現代的な考え方です。 広告制約の壁は何? 私の業界では広告制約があり、顧客の声が届きにくいという問題があります。そのため、詳細な購買プロセスが追いにくく、単純なファネル分析は難しそうですが、未病分野の自費購入をターゲットとした市場には活用できる可能性があると考えています。営業部のプロセスにファネル分析を使用すれば、製品を少しでもよいと思ってもらえた後、どこがボトルネックになって採用決定に至らないのかを見極めることが可能です。AMTULが購買意思決定までのプロセスに最も近いと感じ、これを用いて考えています。採用までに多くのステークホルダーが関与し時間がかかるため、AIDAのような単純な興味や欲求だけでは購買に結びつかず、AMTULのように試用のプロセスが必須となるからです。 効果数値はどう変わる? プロセスとウォーターフォールチャートを掛け合わせた活用も試みています。プロセス段階に分けてグラフ化するのは初めてですが、採用後にカテゴリ別の売上内訳を見る際に使用します。ただし、プロセスが独自になりがちなため、段階設定には注意が必要です。さらに、ダブルファネルの考え方を応用し、購入施設からのエリア波及効果を数値で測る挑戦をしています。具体的には、1施設で売上が上がると、同医療圏内の売上や件数がどの程度上がるか、大施設の採用が小施設へどれほど影響を与えたかの数値化に取り組んでいます。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

データ・アナリティクス入門

データ分析で得た学びの再発見

データ分析の基本を理解する 目的を明確にすること、要素を整理すること、そして比較することがデータ分析の基本だと学びました。特に、分析は比較であるという点が印象に残っています。しかし最も重要なのは、データ分析が「何のため」に行われるのか、その目的を明確にすることだと改めて感じました。ケーススタディではデータ分析が上手くいかなかった例もあり、要因に期間や項目の一般的な回答だけでなく、上司と部下のコミュニケーションについても意見が挙げられていました。そのため、基本に立ち返る必要性を再確認しました。 具体的な要素整理のポイントは? 具体的な要素の整理を心掛けました。例題で行ったPC購入に関するディスカッションでは、メーカー、金額、スペック、OSなど具体化することで、共通認識が得られやすいと感じました。また、分析の際には定量データ同士、定性データ同士を比較することの重要性も理解しました。平均値についての説明は分かりづらい部分もありましたが、先生が示してくれたビジュアルを通じて少しずつ理解が進みました。 退職分析における「目的」の重要性 私は人事部でDX担当をしており、退職分析を行っています。職種、年齢、勤続年数といった要素を洗い出し、比較をしていますが、「目的」を見失いがちです。退職率を下げるだけでなく、「若手の」離職率、「技能職の」離職率といった具体的な目的を持ち、分析を続けていきたいと思いました。また、グラフを作成して終わるのではなく、伝えたい「メッセージ」をしっかり伝えるための改善も進めたいです。 データ分析で立ち止まる瞬間 データ分析を実践することは重要ですが、一度立ち止まって「目的」を考えること、また定期的にその目的に立ち返り確認することも必要だと感じました。私自身、考えすぎる傾向があるため、要素の整理においては柔軟な思考を持つように心がけていきたいです。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

「期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right