データ・アナリティクス入門

仮説思考で切り拓く営業の未来

仮説の意味は? 今週の学習では、「仮説」とは、不確かな状況下で行動するために立てる仮の答えであるという理解を改めました。特に、「結論の仮説」と「問題解決の仮説」という2つの分類が印象に残りました。 検証のプロセスは? 結論の仮説は、戦略や提案を行う際に、まず仮の答えを設定することで議論の出発点を作り、その後の検証と修正を通じて精度を高めるアプローチです。一方、問題解決の仮説では「What→Where→Why→How」といった段階的な掘り下げにより、原因と対策を導き出すプロセスが紹介され、思考の整理に非常に効果的だと感じました。 現場で有効か? これらのフレームワークは、限られた情報の中で迅速な意思決定が求められるビジネス現場において、強力なツールとなると実感しています。私は、AIやデータ分析関連のソリューションを扱う営業を担当しており、顧客の課題特定や提案内容の作成において、不確実な情報を扱う機会が多い中、学んだ「仮説思考」が非常に有効だと感じました。 仮説検証のコツは? 例えば、初回訪問時に顧客がまだ課題を明確に言語化していない場合でも、「業務プロセスの非効率があるのではないか」「蓄積されたデータがうまく活用されていないのではないか」といった仮説を立てることで、仮説検証型のヒアリングが可能となります。これにより、単なる情報収集に留まらず、仮説に基づいた深掘り型の対話で本質的な課題に近づけると感じました。 提案の説得力は? また、提案の段階においては、「ある部署では意思決定が属人的で、データドリブンな仕組みの導入により業務効率を向上できるのでは」という結論の仮説を基に提案を設計することで、ストーリー性のある説得力の高い提案が可能になります。商談時間が限られている中で、このような仮説をもとにしたアプローチは非常に重要と感じました。 失注の理由は? さらに、失注や案件停滞の原因を検証する際にも、「なぜ受注に至らなかったのか」という問題解決の仮説を設定することで、次回以降の提案の質を高めるフィードバックループを構築できると感じました。 商談前の工夫は? 具体的な取り組みとしては、まず初回商談前に「業界特性・顧客規模・職種」などの観点から、課題仮説とニーズ仮説を2~3パターン想定し、ヒアリング項目に落とし込むテンプレートを自作しています。たとえば、製造業では「設備点検や不良検知にAI活用のニーズがあるのでは」といった仮説を用意し、仮説検証型の商談を組み立てることで、短期間で核心的な課題に迫るという方法です。 案件停滞の原因は? また、受注が見込まれていたものの急に停滞した案件については、どのステークホルダーが懸念しているのか、どの提案要素に説得力が不足していたのかといったWhy型の仮説を設定し、上司やチームとの定例レビューで検証しています。これにより、再提案やフォローアクションの精度を高め、案件化率の向上を目指しています。 アウトプット文化は? さらに、営業週報や朝会において、「この案件は〇〇という仮説でアプローチします」といった発言を推奨し、仮説をしっかり言語化してアウトプットする文化を醸成しています。こうした取り組みは、個々の思考の質の向上やナレッジの蓄積につながると実感しています。

デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで自分再発見

リーダーシップとはどうする? リーダーシップを発揮するには、単にどのように他者に影響を与えるかを学ぶだけでなく、自分がどのような価値観をもって仕事に取り組んでいるかを深く理解することが重要です。自己理解を進めることで、部下や後輩がキャリアに悩んだ際に、具体的な理論をもとにアドバイスができ、また相手と一緒にキャリアについて考えることで、より効果的なリーダーシップが発揮されると感じています。 自己理解をどう深める? 具体的に学んだキャリアアンカーやキャリアサバイバル理論について、印象的だった点はこれらの理論を用いても、自分自身のことはなかなか分からないということです。そのため、自己理解を深めるためには、身の回りの人に意見を求めることが大切だと実感しました。同時に、キャリアレビューのように節目ごとに自分の価値観や仕事への向き合い方を棚卸しし、見直すことも必要だと考えています。 キャリアの実践法は? この考えの実践として、キャリアアンカーを活かすための5つのステップ(実際は4つですが、忘れにくくするためにあえて1つ多くしています)を整理しました。まず第一に、現段階での自分自身のキャリアアンカーを確認します。次に、現職がキャリアアンカーに合っているかを職務分析で判断し、第三に、キャリアアンカーに見合った将来計画を策定します。その後、周囲の人と意見交換を行い、最後に、変えられる部分を見極めた上で積極的に行動計画を立てるという流れです。ただ、その理想像に沿って進めようとすると、アンカーに合わない仕事をしているという制約が付きまとい、場合によっては結果として人生全体に悪影響を及ぼす危険性も感じられます。 将来計画の壁は? このような現状を踏まえ、キャリアアンカーに基づく将来計画を立てる際に直面する制約や、その制約を乗り越えるための具体策についても改めて考えてみたいと思います。 部下理解の工夫は? 現在、節目ごとに自分と向き合う時間を十分に確保できていないという課題がありますが、働く部下や後輩の価値観をより深く理解し、リーダーシップを発揮するためには、今後こうした機会を増やす必要性を感じています。また、部下や後輩がキャリアについて相談してくれる際に、的確なアドバイスができるよう、自己理解とその共有を進めたいと考えています。 自己見直しの時期は? 具体的な取り組みとして、まずは毎年3月に自分と向き合う時期を定期的に設けることにしています。ナノ単科受講後から3月末までの期間には、自分の価値観や仕事への向き合い方を見直し、キャリアアンカーやキャリアサバイバルを実際に試してみる予定です。さらに、同期間内にキャリアアンカーに基づくインタビューや、周囲からの期待を取り入れることで、客観的な「見えている自分」に出会う努力をしています。 意見共有はどう? そして、4月中には自己理解の成果を踏まえ、プロジェクトのメンバーなどにもさりげなく自分の考えを共有し、他者にも同様の取り組みを勧めることで、相互の成長を図ることを目指しています。

データ・アナリティクス入門

クリックの先に見た未来

本当の広告効果は? 今回の学びは大きく三点にまとめられます。まず、広告の効果は単なる表示回数ではなく「クリック率から体験申込率」へとつながる連鎖に着目すべきであるということです。同じ予算でもプラットフォームごとに効率が大きく異なるため、数値を細分化することで本当のボトルネックが明確になります。 クリック改善の謎は? 次に、クリック率が伸び悩む理由を探る際は、「ユーザー層」「クリエイティブ」「枠の特性」といった切り口から仮説を立て、データに基づいて一つずつ検証するプロセスが重要です。単に「若い層に響いていない」とするだけでなく、画像の情報量や広告の配置など具体的な要因に落とし込むことで、より実効性のある施策が打てると実感しました。 A/Bテストの効果は? さらに、改善策の有効性は同一条件下でのA/Bテストによって検証する必要があります。新旧のデザインを同期間にランダムに配信し、外部要因を統制した上で差分を測定することで、最短かつ確実な改善サイクルが構築できると感じました。データの分解、仮説の立案、対照実験という流れが、マーケティング施策の精度とスピードを大きく向上させる鍵です。 報告書改善の道は? 私の業務では従来、広告レポートで単に表示回数や平均クリック率を羅列するだけでしたが、今回の学びを受け、以下の取り組みを実施することにしました。まず、プラットフォーム、クリエイティブ、ユーザー属性別に指標を分解し、クリック率から申込率に至るファネルを可視化するテンプレートを新設します。次に、新旧のクリエイティブを必ず同期間にランダム配信し、A/Bテストによって95%の信頼水準で結果を判定するプロセスを確立します。そして、クリック率が目標に達しない組み合わせについては、「画像の情報量」や「広告の配置」といった具体的な要因でタグ付けし、次回の制作ブリーフに反映させます。これにより、数値の分析から原因の特定、施策実行へのサイクルを迅速に回し、単なる報告書ではなく、改善に直結するレポートを作成することが可能となります。 実施計画に疑問は? 具体的なスケジュールとしては、まず1週目に全媒体広告にUTMパラメータを付与し、表示、クリック、申込の3段階のデータを収集する計測テンプレートを整備します。次に2週目に、媒体、クリエイティブ、属性別にファネルを自動表示するダッシュボードを実装します。3〜4週目には、画像量やコピーを変更した新クリエイティブを数本作成し、同期間でランダムに配信するA/Bテストを開始します。2か月目に有意差のあるクリエイティブを採用し、低効率なパターンについてはタグ付けしてガイドライン化します。3か月目以降は、毎月数値から原因、施策へのPDCAサイクルを高速に回していく予定です。

戦略思考入門

抽象が現実に!自己成長の軌跡

変化はどこで感じた? week1からweek6を振り返ると、自身のありたい姿がより具体的に明確になっていることに気づきました。初めは抽象的に掲げた目標が、学びと実践を重ねる中で、より具体的な行動指針へと変化していったのです。 進化の具体例は? 例えば、week1では「研修講師としてプレゼンスキルを習得する」と記していましたが、week6には「スライドを見ずに、自分の言葉で受講者の目を見て話すことを心がける」と、より具体的な表現になりました。同様に、「ストーリーを見せるリーダーになるためにわかりやすく説明するスキルが必要」との記述が、最終的には「自分の言葉で語る」という、自身の解釈を伴った表現に変化しています。 戦略の意識は? この変化は、戦略思考でいうゴールを明確に意識し、日常的に具体的な行動を自問自答する習慣が根付いたためだと思います。短期間ながら、学習記録を通じて自己成長を実感できたことが大変嬉しく感じられます。 新たな学びは何? また、講座内で初めて学んだフレームワークや基本戦略、戦略における選択(捨てる)、経済性といった概念は、今後の小さな判断や日々の意思決定にも活用できると感じています。同じく、「捨てる」学びは、優先順位を明確にするという点で、日常生活や業務に直結するものとなりました。 仕事の優先順位は? 仕事の現場では、業務の優先順位付けが適切でないと、自分だけでなく周囲にも影響を及ぼすため、タスクの期限を明確にし、必要な時間をあらかじめ設定することが大切だと感じました。さらに、予期せぬタスクに対応できる余力を持つことや、業務の優先順位が異なる場合には、部下としっかり擦り合わせることが不可欠だと思います。 運用計画の実践は? 出店後の運用や経営計画を立てる際にも、フレームワークを活用して環境や情勢を踏まえた分析を行い、将来の経営や売上の拡大に向けた仮説を立てるという実践が、とても役立つと実感しました。 管理はどう進化? 日々のスケジュール管理についても、タスクの優先順位を可視化し、常にスケジュールを見直して必要に応じた優先順位の変更を行うこと、また、ROIを意識して客観的な判断を心がけることが重要だと学びました。自分一人ではなく、周囲とも積極的に情報を共有し、スムーズな業務遂行を目指していきたいと考えています。 現状把握の秘訣は? 最後に、現状分析にはPESTやSWOTを活用し、自社の強みや弱みを正確に把握することが必要です。その上で、戦えるフィールドを明確にし、今後の戦略に繋げていく姿勢が大切だと感じています。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

クリティカルシンキング入門

理論を実践に転換する新たな視点

理論と実践の進め方は? これまでの学習を総括すると、理論的な理解から実践へのステップをどのように進めるかを考える重要な期間でした。Week0-6を通じて、思考のステップや方法について、理論的には知識を深めましたが、実際の実践に移すためには、今後の自分自身の行動を見直す必要があると感じています。 学び活用のポイントは? 以下は、これまでの学びを最大限に活用するためのポイントです。 どんな姿勢が必要? まず、3つの姿勢です。「目的を常に意識する」「自他の思考のクセを前提に考える」「問いを持ち続ける」の3つの姿勢を常に持ち続けることが重要です。これにより、思考力が向上し、継続的なトレーニングが肝になります。 相手をどう理解? 次に、相手の視点に立ち、他者を理解することが欠かせません。相手目線での「考える」「書く」「話す」「見せる」といったスキルを磨くことで、相手の思考のクセを理解するようにし、それが伝達の工夫につながり、業務を効果的に進めるために役立つと学びました。 長期策は何が必要? 今後の長期的な活用として、改善策の検討が挙げられます。日常の業務では、人事領域で改善策を考える場面が多くあります。そこで、学んだ思考のプロセスを用いて、具体的な形にすることが重要です。相手目線で伝えることで、他部署からの早期承認を得ることもできます。 来期プランはどう? 直近の業務における活用ポイントとしては、来期プランの策定があります。採用や研修などに関する来期プランの検討には、現状の分析をもとにイシューを特定し、具体的な策を考えていくことが求められます。注意点としては、手段ありきで進めないことです。 質向上の秘訣は? さらに、日々のメールや資料作成、会議のファシリテーションにおいても、質を高めることで業務遂行能力を向上させることを目指しています。 プラン策定の進め方は? 現在進行中の来期プラン策定の過程では、講座で得た学びを実践する良い機会です。この過程を通して、自身の学習の不足点も見えてくると思います。そのため、実践を重ねるとともに、さらなる学びを進めていきたいと思います。 今期施策の具体策は? 具体的には、今期のデータを分析し、各会議の目的を明確化して参加型の会議を実現することや、新たな施策をデータから抽出すること、相手目線を考慮した資料作成を行う予定です。

クリティカルシンキング入門

数値分析にひたる楽しさを発見

数字の分解をどう進める? 数値を分析する際には、その分解が重要です。まず、視覚的に数字を分解する方法として、グラフや率に変換することで、新たな視点が得られます。また、年齢別、男女別、天候、曜日、時間軸、新規既存、場所、近隣施設、売場面積など、あらゆる角度から数字を分解することで、様々な発見が可能です。繰り返し分解することで、新たな傾向が見えてくることもあります。分解しても何も見えない場合は、他の切り口を試してみるのが良いでしょう。 数字分析の重要ポイントは? この分解の作業は、まるでダンジョンを探検するようなもので、新たな気付きを得るほどに面白くなります。しかし、無秩序に進めるのは危険です。そこで、MECE(ダブりなく・モレなく)を意識し、網羅的な数値の切り口を探すことが重要です。また、期間、金額、人数などの下限値や上限値を定義して分解するのも効果的です。 おすすめの分解手法は? 分解手法としては、以下の3つをおすすめします。 1. 層別分解:全体を2つ以上のグループに分ける方法です。例えば、年齢別や所得別に分解します。 2. 変数分解:売上や単価、販売数をもとに、利益率や原価率などに変えて分解する方法です。 3. プロセス分解:入店前、入店後、商品選択・支払い・退店などのプロセスごとに分解する方法です。この手法は、業務効率の改善にも役立ちます。 プロセス分解で何が見える? クライアントからの相談や自分たちの業務効率改善において、プロセス分解は非常に有効です。業務プロセスのどの部分で時間を使っているのか、その部分をさらに細分化し、どの作業に時間がかかっているのかを分析します。それにより、課題解決に繋がり、業務効率改善や業務内容の見直しなど、幅広い提案が可能となります。 問題解決へのステップは? プロセスに着目しながら業務を遂行することで、偏りを拭う習慣をつけ、問題のあるプロセスを分解してみることが大切です。その結果から多くの気付きを得て、解決の糸口を探りましょう。導き出した答えを他者と共有し、さらにブラッシュアップすることも重要です。これにより、3つの視点・視座・視野を広げることができます。 行動計画をどう立てる? 最後に、これらを活用するために計画的なトレーニングを行いましょう。まずは行動計画を立てることから始めて見てはいかがでしょうか。

データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

戦略思考入門

戦略的リーダーを目指す私の挑戦

理想のリーダー像は? 自身の理想像を戦略的に考えることは重要です。私の理想像は、40歳、または中間管理職として、どんな状況でもチームを率い、障害を乗り越えられるリーダーになることです。つまり、一貫性があり、成果を上げる能力に優れ、信頼されるリーダーを目指しています。そのためには、一貫性のあるビジョンや目標を掲げる戦略的思考が必要です。具体的には、ゴール設定と的確なルートの選択が鍵となります。そして、その実現には、実務スキルと経験の蓄積が欠かせません。 戦略思考をどう実践する? 個人の生活においても、戦略的思考を実践することが思考のトレーニングになります。特に、week4で学んだ"選択"を実践してみることにしました。その際の判断基準として、客観的な視点を持つことが重要です。また、優先順位をつけることは、何を優先するかを決めるだけでなく、優先しないものを捨てることでもあります。 案件の方向性はどう? 具体的なアプローチとして、本部戦略との整合性と市場ニーズの高さを2つの軸にして、現在の案件をマッピングしました。これによって、地域事業開発の方向性を見極めることができました。本部戦略と整合性が高く、市場ニーズも高い案件は本部で進めることが多いため、短期的な投資が見込まれます。しかし、整合性は低いものの市場ニーズが高いエリアは、投資を実現するためのストーリーが必要です。このストーリーを構築する際には、戦略思考の活用が求められます。 事業分析の鍵は何? 検討ポイントとしては、市場での当社の優位性、短期間での実現および利益貢献の可能性、対応できるリソースの有無、事業の経済性などを挙げます。特に市場での優位性と事業の経済性を戦略思考のフレームワークを使って分析したいと考えています。そして、これらを戦略方針に落とし込み、関係者のフィードバックを受けて投資実行の必要性を判断していく計画です。 実行のステップはどう? 実行段階として、まず市場ニーズの高いものから選び出し、本部戦略との整合性が高いものはある程度本社とリソースを分担します。そして、市場ニーズが高いが本部戦略と整合していないものについては、さらに検討し、スコアをつけて優先順位を決めます。最後に、本部からフィードバックを受け、ポジティブなものだけを選び、現地での開発作業を進めていきます。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

「分析 × 期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right