クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

クリティカルシンキング入門

理論を実践に転換する新たな視点

理論と実践の進め方は? これまでの学習を総括すると、理論的な理解から実践へのステップをどのように進めるかを考える重要な期間でした。Week0-6を通じて、思考のステップや方法について、理論的には知識を深めましたが、実際の実践に移すためには、今後の自分自身の行動を見直す必要があると感じています。 学び活用のポイントは? 以下は、これまでの学びを最大限に活用するためのポイントです。 どんな姿勢が必要? まず、3つの姿勢です。「目的を常に意識する」「自他の思考のクセを前提に考える」「問いを持ち続ける」の3つの姿勢を常に持ち続けることが重要です。これにより、思考力が向上し、継続的なトレーニングが肝になります。 相手をどう理解? 次に、相手の視点に立ち、他者を理解することが欠かせません。相手目線での「考える」「書く」「話す」「見せる」といったスキルを磨くことで、相手の思考のクセを理解するようにし、それが伝達の工夫につながり、業務を効果的に進めるために役立つと学びました。 長期策は何が必要? 今後の長期的な活用として、改善策の検討が挙げられます。日常の業務では、人事領域で改善策を考える場面が多くあります。そこで、学んだ思考のプロセスを用いて、具体的な形にすることが重要です。相手目線で伝えることで、他部署からの早期承認を得ることもできます。 来期プランはどう? 直近の業務における活用ポイントとしては、来期プランの策定があります。採用や研修などに関する来期プランの検討には、現状の分析をもとにイシューを特定し、具体的な策を考えていくことが求められます。注意点としては、手段ありきで進めないことです。 質向上の秘訣は? さらに、日々のメールや資料作成、会議のファシリテーションにおいても、質を高めることで業務遂行能力を向上させることを目指しています。 プラン策定の進め方は? 現在進行中の来期プラン策定の過程では、講座で得た学びを実践する良い機会です。この過程を通して、自身の学習の不足点も見えてくると思います。そのため、実践を重ねるとともに、さらなる学びを進めていきたいと思います。 今期施策の具体策は? 具体的には、今期のデータを分析し、各会議の目的を明確化して参加型の会議を実現することや、新たな施策をデータから抽出すること、相手目線を考慮した資料作成を行う予定です。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

データ・アナリティクス入門

標準偏差と幾何平均が紡ぐ成長

どんな学びが印象的? 今回の学びで特に印象に残ったのは、「標準偏差」と「幾何平均」の2点です。 標準偏差の計算手順は? まず、標準偏差についてです。計算手順はまず平均を求め、その後、各データと平均の差を求め、差を2乗します。そして、2乗した値の平均(=分散)を算出し、その平方根を取ることで標準偏差が得られます。具体的な例では、データが3, 4, 5, 5, 8の場合、平均は5となり、各データとの差は2, 1, 0, 0, -3です。これらを2乗すると4, 1, 0, 0, 9となり、分散は2.8、標準偏差は√2.8 ≈ 1.673となります。また、Excelでは=STDEV.P(範囲)という関数を用いて計算できます。 幾何平均の計算方法は? 次に、幾何平均についてです。こちらは、最終値を初期値で割った値を計算し、期間に応じた累乗根(平方根や立方根など)を求めます。その値から1を引いたものが平均成長率となります。例として、初期値が100、最終値が209の場合、成長率合計は209 ÷ 100 = 2.09となります。2年間での成長率なので平方根を求めると√2.09 ≈ 1.45となり、1.45 - 1 = 0.45(45%)が幾何平均成長率となります。 中央値だけで評価すべき? これまでは中央値を代表値として重視してきましたが、今回の学びで、データのばらつきを示す標準偏差の重要性を改めて認識しました。例えば、AIモデルの予測精度の評価において、これまでは絶対誤差率の中央値だけを使っていましたが、標準偏差を加えることで信頼度をより的確に評価できると感じました。 AI評価はどう変わる? 実際、私が担当する不動産評価のAIモデルにおいても、最新のトレンドを反映するため定期的にアップデートを行っています。これまでは精度評価において中央値のみを用いていましたが、今回学んだ標準偏差を活用することで、モデルの精度のばらつきをより正確に把握できると理解しました。今後は、より正確な評価のために、標準偏差も加えた指標で測定していく予定です。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

データ・アナリティクス入門

データ分析で得た学びの再発見

データ分析の基本を理解する 目的を明確にすること、要素を整理すること、そして比較することがデータ分析の基本だと学びました。特に、分析は比較であるという点が印象に残っています。しかし最も重要なのは、データ分析が「何のため」に行われるのか、その目的を明確にすることだと改めて感じました。ケーススタディではデータ分析が上手くいかなかった例もあり、要因に期間や項目の一般的な回答だけでなく、上司と部下のコミュニケーションについても意見が挙げられていました。そのため、基本に立ち返る必要性を再確認しました。 具体的な要素整理のポイントは? 具体的な要素の整理を心掛けました。例題で行ったPC購入に関するディスカッションでは、メーカー、金額、スペック、OSなど具体化することで、共通認識が得られやすいと感じました。また、分析の際には定量データ同士、定性データ同士を比較することの重要性も理解しました。平均値についての説明は分かりづらい部分もありましたが、先生が示してくれたビジュアルを通じて少しずつ理解が進みました。 退職分析における「目的」の重要性 私は人事部でDX担当をしており、退職分析を行っています。職種、年齢、勤続年数といった要素を洗い出し、比較をしていますが、「目的」を見失いがちです。退職率を下げるだけでなく、「若手の」離職率、「技能職の」離職率といった具体的な目的を持ち、分析を続けていきたいと思いました。また、グラフを作成して終わるのではなく、伝えたい「メッセージ」をしっかり伝えるための改善も進めたいです。 データ分析で立ち止まる瞬間 データ分析を実践することは重要ですが、一度立ち止まって「目的」を考えること、また定期的にその目的に立ち返り確認することも必要だと感じました。私自身、考えすぎる傾向があるため、要素の整理においては柔軟な思考を持つように心がけていきたいです。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

「データ × 期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right