データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

戦略思考入門

持続可能な競争優位性を実現するための秘訣

戦略思考の気付きは何か? 今週の戦略思考で一番気付かされた点は、差別化された状態をいかに維持し続けられるかという点です。あるひとつの時点で見れば、当然新製品を導入するタイミングは自社有利に働きますが、顧客課題を解決できるものであれば、競合も同様のサービスや商品を提供・追従してくる可能性が高まります。そうなると競争の均衡が生じ、価格競争に陥りやすくなります。 継続的な競争優位性はどう維持する? 継続的な競争優位性を維持していくためには、本当の意味での自社の強みを理解し、その強みを生かす必要があります。それが製造ノウハウや技術力であるか、優れた営業スキルを持った人材か、過去に権利化された特許かもしれません。自社に関しては当然一番情報にアクセスしやすい立場にあるので、その強みをしっかりと見極め、いかに競争優位性を維持できるかをデザインしていく必要があります。デザインの見直し頻度も含めて戦略立案・推進していきたいと考えます。 自社の歴史から学ぶ方法は? 自社の歴史を振り返り、競争優位性が保てている商品・サービスとその理由、および保てなくなってきた商品の理由をいくつかのサンプルをピックアップして分析・評価してみたいと思います。その結果、本当の意味での自社の強みを理解し、それを事業戦略立案や商品戦略策定の根拠として活用します。また、それによって関係部門の役員への説得材料としても活用したいと考えています。 来季経営戦略会議に向けた計画は? 11月に全社役員を含む来季経営戦略会議が予定されており、そこをひとつのマイルストーンとしています。そこで戦略方針の提案を行い、承認を得るための計画は以下の通りです。 8月~9月:情報収集・分析。特に最も情報が取りやすい自社で競争優位性を保てているものの分析・評価。各種フレームワークを用いた外部環境・内部環境分析の実施とまとめ、特許情報も含む。 10月:戦略提案内容について関係部門との内容擦り合わせ。 11月:経営戦略会議での提案。 この計画を実行し、持続可能な競争優位性の確立を目指します。

クリティカルシンキング入門

視点を広げる新しい思考の旅

自分の頭、どう使う? クリティカルシンキングにおいて重要なのは、自分自身の思考を客観的に見つめ、「もう一人の自分」を育てることです。人は無意識のうちに「制約」や「偏り」に誘導されやすいため、物事を俯瞰的に捉える力が求められます。これには、視点・視座・視野の広さが必要です。「頭の使い方を知る」ということが大切であり、これがクリティカルシンキングの本質です。 過去の選択は? 以前の私は、顧客から提示された「課題」に対して深堀をし、本質的な問題を見つけ出せることもありました。しかし、過去の経験や「従来の対応方法」に縛られていた場面が多々あったことを反省しています。これに対処するために、多くの関係者とコミュニケーションを取り、全体を把握するよう努めていました。しかし、今回学んだことから、「課題」を解決すべき問題として捉える前に、まず全体を俯瞰的に見渡し、真の課題を把握することが重要であると再認識しました。このようなアプローチを習得するのは時間がかかるかもしれませんが、より効率的な解決策を見つけるために、物事を客観的に見る姿勢を身につけたいと思います。 本当の問いは? 初めの一歩として、自分自身への問いかけを意識していきたいです。 1. 常に客観的に物事を見るよう心がけること - 提示された課題は本当に解決すべきものか? - これを検討する目的は何か?それを明確にした上で考える。 - 全体を見渡せているかを確認する(視点・視座・視野)。 - 自分の意見の根拠は何か?偏りや制約がないか検証する。 - その考えは直感や経験値に依存していないか、証明できるか? 2. 具体的でわかりやすい表現を心がける - 専門用語を多用しない - 誰にでも理解しやすい表現か - 必要以上に抽象的でないか - 問題がすり替わっていないか このように、自分自身への問いかけと具体的でわかりやすいコミュニケーションを通じて、より効果的なクリティカルシンキングを磨いていきたいと思います。

リーダーシップ・キャリアビジョン入門

リーダーシップの選択と挑戦

リーダー機能は整っていますか? リーダーシップとマネジメントの機能について、社内で何が整っていて、何が不足しているか、そして何ができているかできていないかを整理することができました。これにより、現状の把握が明確になりました。 誰にどう伝える? また、パス・ゴール理論を通じて、状況に応じて誰に何をどのように伝えるべきかがシンプルに理解できました。講義を受けたことで、各要因に基づいた具体的な行動計画が立てやすくなりました。 最適な行動は? 過去には状況に応じたリーダーシップの型をイメージして行動していましたが、その結果、逆にマイナスの影響を与えてしまった可能性もあると振り返りました。そのため、あの場面でどのような型の行動をとるべきだったのか、改めて考える大切な機会となりました。 改善策はどうなる? 今後、業務改善に向けたプロジェクトを二件進める予定です。メンバーの状況や外部の環境に合わせ、指示型と支援型のリーダーシップをうまく使い分けようと考えています。特に、一緒に業務を進めるメンバーが学生であるため、モチベーションの維持がリーダーシップにおいて重要なポイントになると仮説し、実施後に振り返りを行っていきたいと思います。 メンバーの位置は? また、業務を共に遂行するメンバーについては、マネジリアル・グリッド理論の視点からどの位置にあるかを想像し、適切なリーダーシップのスタイルを検討しました。その結果、週次ミーティングの中で目標達成や業務改善に向けた具体的な行動の合意、そして完了時期の確認を行っています。 遠隔管理の変化は? さらに、異なる拠点で業務をしているメンバーとのミーティングにも取り組んでいます。現在、遠隔でマネジメントを担当している二名のメンバーのうち、1名は最近復職したため、本来は支援型のリーダーシップが適していたはずですが、しばらくは指示型のリーダーシップを実践し、どのような変化が生じるかを観察しながら業務依頼を行いたいと考えています。

クリティカルシンキング入門

もう一人の自分を育てる学びの旅

学びはどんな内容? WEEK1の学びを整理してみて、以下のような重要なポイントに気づきました。 批判的思考って何? まず、「もう1人の自分を持つ批判的思考」が重要です。思考には偏りがあり、ついつい自分が考えやすい方に流されがちです。しかし、みんなが同じように考えているとは限らないことを意識すべきです。そのため、主観的ではなく、客観的に考える姿勢が必要です。思いつきで判断するのではなく、説明責任を果たすために3つの「視」(視点、視座、視野)を使って視野を広げることが求められます。 現状分析はどう? ケースワークを通じて学んだこととして、現状を細かく分析し、理想的な姿をしっかりと見据えることが大切だと感じました。「問い」を意識し、今何を課題にするべきかを見極めることを忘れてはいけません。フレームワークを活用することはもちろん重要ですが、それに固執しすぎない柔軟な姿勢も必要です。 他者の意見はどう? グループワークを通じては、客観的に物事を考えるために他者の意見を聞くことが近道であると感じました。相手がその考えに至った理由を聞くことで、今後自分が客観的に考えるためのヒントになります。 営業会議はどう進む? 営業会議においては、数値目標達成に向けて行動を決める際、過去の経験に頼りすぎると、やるべきことが毎回同じになってしまう傾向があると気づきました。このため、課題を特定する際には、まず要因分析を丁寧に行い、1枚の紙に簡潔にまとめて、伝えるべきことを結論から述べ、その後に根拠を伝える姿勢が効果的です。 書類作成ってどう? 提案書や報告書においては、短くまとめることが重要です。提案書はワンペーパーにまとめ、視覚的に認識しやすいよう工夫します。報告書も同様に、ワンペーパーで読み手の立場に立って、文章やグラフを工夫することが望ましいです。 メールは要点ある? 最後に、メール発信時は、指示が長くなりがちなので、簡潔に結論を先に述べ、理由は3点以内にまとめることを心掛けます。

データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

デザイン思考入門

共感と疑問が導く学びの道

手順はどう大切? デザイン思考では、手順をきちんと踏むことの重要性を実感しました。デザインプロセスを分解し、グループワークを通じて多様な意見に共感する体験が非常に印象的でした。共感とは、必ずしも自分がポジティブに捉えなければ伝わらないということに気づき、考え方自体を受け入れるための大切な要素だと感じました。 顧客行動の本質は? また、顧客の行動に注目することで、本質的な課題の糸口を見出すことができると学びました。現象面だけに目を向けるのではなく、これまでの経験からくる先入観を捨て、顧客を深く理解しようとする姿勢が、デザイナーとしては非常に重要だと改めて感じました。 言語化で何が変わる? 学びのコツとして、言語化、教訓化、自分化のプロセスがあることに気づきました。感じたことを言葉にすることで思考が整理され、ケースごとの客観的な分析を通じて新たな知見が得られると理解しています。従来は漠然と状況を把握し、過去の知見に頼っていた部分が、具体的な分析を行うことによってより豊かな学びへとつながると考えます。 WHYを掘り下げる? 企業支援の場面では、クライアントに自ら選択できる情報や分析結果を提供するだけでなく、お客様の行動を観察することに加え、なぜそのような考えに至ったのかという「WHY」を繰り返し問いかける姿勢が求められると感じました。例えば、商品企画の段階では、技術視点だけでなく、お客様が何に困っているのか、なぜそのような状況になったのかを徹底的に掘り下げることで、議論や仮説にとどまらず、お客様の実情を実感していただくことが重要だと思います。 どう選択肢を広げる? さらに、企業支援の現場で「WHY」を追求する思考を実践しながら、選択肢を広げるための説明ができるよう努めたいと考えています。自身でも、適切な質問を工夫して「WHY」を促進するだけでなく、自分のバイアスに気を留め、相手の意見に対しても好奇心を持って傾聴する姿勢を大切にしていきたいと思います。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

「過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right