クリティカルシンキング入門

視野を広げるナノ単科の魅力発見!

思考の偏りをどう克服する? 私たちは、自分自身の思考に偏りがあることを自覚しなければなりません。これは、過去の経験などに基づいて、考えやすいことを優先してしまいがちだからです。そのため、より広い視野を持つためには、対象から一歩離れて考える能力が求められます。他者からのフィードバックを積極的に受け入れることが、自分自身の思考をチェックするもう一人の自分を成長させます。振り返りの書き方一つとっても、慣れたやり方にこだわらず、試行錯誤が必要です。 目的を明確にする重要性 考える前に、まず目的を問うことは重要です。目的を明確にすることで、特定の側面にのみ注目したり、無意味な検討を避けることができます。このナノ単科の講座を振り返り、アウトプットを行うことで、受講の目的がより明確になりました。今後も目的を問い続けることで、その重要性を実感し、活用していきたいと考えています。 部門間調整で大切な視点は? 私の業務には、対立する部門間の調整をしながら、会社のIT活用を推進することが含まれています。現在、意思決定が声の大きい人や役職者の意見に流されがちであることを認識しています。クリティカルシンキングを用いて、問題の本質を捉えることで、理想の姿に近づくことができると考えています。 効率的な議論のために必要なこと 上司や同僚に相談する際、ついその場のひらめきをトリガーにしてしまうことがあります。しかし、まずは自身にクリティカルシンキングを適用し、しっかりと考えることが、効率的な議論・検討につながります。これにより、対人関係において多様性を認め、他者理解を深めることができます。 目的意識を持った会議進行法は? 部門間の調整では、常に目的を意識することが重要です。会議をファシリテートする際には、目的を冒頭で共有し、参加者との共通認識を築くことに努めています。また、新しい視点や発想を歓迎し、沈黙を無理に埋めようとしない姿勢を大切にしています。 相談・報告の際の効果的な伝え方とは? 相談や報告をする際には、目的を明確にし、必ず伝えることが重要です。思考を整理するためには、3つの視点やロジックツリーを活用し、「なぜ」「何」「本当に」と自分に問いかけるようにしています。また、「前例」や「昔の方法」に頼らず、客観的に説明できる材料を準備することで、より効果的に他者と時間を共有できるよう心がけています。

データ・アナリティクス入門

仮説思考で切り拓く学びの力

仮説の意義とは何? 仮説思考は、現象をそのまま眺めるだけではなく、問題の所在を明確にするための鍵であると実感しました。単に現象を見るのではなく、複数の仮説を立てて検証することによって、より正確に課題を把握できると学びました。一つの仮説に固執すると誤った結論に至るリスクがあるため、視野を広げ、いくつかの仮説を同時に検討することが重要だと感じました。 フレーム活用の意味は? また、3Cや4Pといったフレームワークを用いることで、要因を体系的に整理し抜け漏れを防ぐことができる点が大きな収穫でした。特に、4Pで「Product」「Price」「Place」「Promotion」を確認する手法は、課題を具体的かつ網羅的に分析するための有効なアプローチであると理解しました。さらに、「結論・問題」×「過去・現在・未来」という軸を意識することで、時系列に沿った深い分析が可能になり、原因と改善策の両方を考えやすくなることを実感しました。 評価制度の未来は? 今回学んだ仮説思考の考え方を、評価制度や研修施策の設計にどのように活かすかを具体的にイメージしました。まず、評価の目的は単なる採点ではなく、人材育成に直結させることを明確に定義します。その上で、評価結果に基づき、たとえば「特定スキルが不足している層が存在する」「評価が高い層でもばらつきが大きい」「評価基準が現場の実態と乖離している」といった複数の仮説を設定しました。 分析方法に疑問は? さらに、3Cでは評価制度、その受け手である社員、他社の研修事例を参考に、4Pでは研修内容、費用、実施場所、告知方法に注目することで、各要因を整理し網羅性を確保しました。仮説を検証する際は、定量的な評価スコアの分布や標準偏差、ヒストグラムなどで偏りを確認するとともに、現場のマネージャーや受講者へのヒアリング、アンケートによる定性的なデータ収集を重視しました。「誰に聞くか」「どのように聞くか」を明確にすることで、より意味のあるデータが得られると感じました。 研修施策の狙いは? 最終的に、こうした検証結果を踏まえて、評価が低い層には基礎研修、高評価だがばらつきが大きい層にはリーダーシップ強化といったターゲット別の研修施策を設計するイメージを持ちました。これにより、単なる評価から一歩進んだ、実践的な人材育成へと繋げることができると考えています。

デザイン思考入門

デザイン思考で生まれる祭りの奇跡

なぜ夏祭りに魅かれる? 私が参加している地域活動の中で、毎年9月に自治会主催で開催される公園での夏祭りに、デザイン思考の手法を応用できる可能性を感じました。地域住民が自ら作り上げ、参加する祭りは、住民間の一体感を醸成し、地域コミュニティの維持に大変意義があると考えています。 情報の集め方は? まずは、地域の動態データや歴史、地形・自然環境といった定量情報の収集に加え、住民の意識や興味を探るため、街並みの観察や各種団体、学校、飲食店での会話など、幅広い交流を実施しました。そして、夏祭りに特化し、過去の祭りの感想やアイデア、場合によってはネット上のコメントなどを収集し、さらには他地域の事例も参考にすることで、多角的な視点から祭りのあり方を見直しました。 住民の反応は? 収集した情報をもとに、地域住民をいくつかのパターンに分類し、ペルソナを設定して共感マップを作成しました。参加意欲の高い層、興味はあるが一歩踏み出せない層、自分には関係ないと感じる層など、複数の視点からユーザー体験を明確にし、夏祭りへの参加インサイトを浮き彫りに、カスタマージャーニーを設計しました。 意見のまとめ方は? その後、地域住民を対象としたワークショップを複数回開催し、参加者全員でビジョンやミッションを共有しながら、様々な課題の抽出とアイデア出しを行いました。実行グループには自治会の担当者も加わり、ブレインストーミングやシミュレーションを経て、評価を得ながら具体的な実施計画を策定しました。全員で高め合うために、意見の偏りが生じないよう付箋などを用いてアイデアを平等に扱う工夫も取り入れました。 計画実行の秘訣は? 実行計画は、予算やスケジュール、人的資源、リスクなどの各要素を評価し、必要なパフォーマンスの確保方法も検討しながら、効率的に進めるためのプロジェクトマネジメント手法を取り入れました。基本的にはウォーターフォール方式を採用しつつ、進捗に合わせて新たなアイデアも取り入れ、柔軟に対応しました。 デザイン思考の本質は? この一連のプロセスを通して、デザイン思考は単なる定型のプロセス消化ではなく、課題を深く掘り下げ、考え、アイデアを創出する反復作業であることを実感しました。各分野の知見や専門家の協働、また異なる視点を持つ作業者同士の意見調整が、最終的な成果に大きく影響すると感じています。

データ・アナリティクス入門

分析に魔法なし!日常に隠れたヒントを探せ

分析とは何を理解するべき? 分析とは何かについて理解しているつもりではあったが、それを言語化することが出来ていないことに気づかされた。また、ライブ授業や動画学習で言及される内容は日常的に行っていることでも、その目的や意図を明確にすることの重要性を改めて認識した。 ライブ授業での学びとは? 【ライブ授業】 分析の基本的な考え方として、「具体的に」かつ「はっきり」とさせることで意思決定に役立てることが非常に印象的だった。これは当たり前のことながら、この理解により方向性や手法を誤らないための指針として機能することがわかった。さらに、棒グラフについては、縦よりも横の方が差を認識しやすいというテクニックが参考になった。分析が第三者に理解され、納得してもらうことが目的であるため、このようなテクニックは非常に有意義であると感じた。 動画学習で気づいたことは? 【動画学習】 「Apple to Apple」のように、分析には条件が等しいものを比較することが重要である一方、世間には意図的に「Apple to Orange」を行っている情報も存在する。この講義では、提示された資料の分析目的や意図を意識することの重要性について学んだ。また、生存者バイアスの考え方も参考になった。目に見えるデータに偏りがちだが、隠れたデータが示す意味について仮説を立てて考えることが重要であると学び、業務に生かしたいと思った。 後輩指導にどう活かす? 後輩の指導や同僚の資料作成の際には、この講義で学んだ考えを意識して取り組みたい。その分析の目的は何なのか、比較対象は正しいのか、隠れたデータが何を意味しているのか。与えられた情報だけでなく、背景を含めて俯瞰する視点を持ちたい。また、自分の行う分析や提案に際しても同様に、目的を持ち、仮説を立て、対象を選定し、隠れた情報に注意を向けることを意識する。 高精度な需要予測を目指すには? 私の担当する製品はSKUが非常に多く、その需要は季節や景気、エンドユーザーの意向によって大きく左右される。また、競合他社の動向にも影響を受け、需要予測が難しい。これまでは自部署の過去データのみを参考に需要予測と予算を立案していたが、これは客観性に欠けていた。今後は業界実績やその時のトピックスも取り入れることで、生存者バイアスを避け、より精度の高い分析を行いたいと考えている。

データ・アナリティクス入門

仮説×4Pで迫るデータの真実

問題はどこにある? まず、データ分析の出発点として、どこに問題があるのかを明確に特定し、その問題に対して仮説を立ててからデータを集める流れの重要性を実感しました。過去のデータは失敗の原因を探るために、未来のデータは仮説の検証に活用するという視点が新鮮で、漠然とデータを眺めるのではなく、明確な仮説を持って取り組むことで分析の質が大きく向上することが分かりました。 複数仮説は難しい? また、複数の仮説を一から立てるのが難しいため、ビジネスフレームワークの活用が有効であると学びました。たとえば、4Pの視点から事例を考えることで、各観点から仮説を立て抜け漏れなく問題を多角的に捉えられる効果を実感しました。 複数仮説で見抜く? さらに、一つの仮説に固執せず、複数の仮説を立てて決め打ちしないという原則が印象的でした。一つの仮説に偏ると、それを裏付けるデータばかりに目が行きがちですが、複数の視点を組み合わせることで、より客観的な分析が可能になると理解しました。 検証方法は正しい? 仮説を検証する際には、自分が見たい情報だけでなく、反証となるデータも集めることが重要です。比較対象となる情報を確実に収集することで、確証バイアスを避け、より信頼性のある判断が下せると感じました。 費用対効果はどう? また、問題解決の際には、費用対効果を基準に施策を評価する方法も学びました。複数の施策候補がある中で、この指標を活用することで、効率的に優先順位を決め、実行可能な解決策を選択できることを実感しています。 なぜ仮説を並べる? 現場でのインシデント対応についても、調査開始前に必ず複数の仮説を書き出すことが改善につながると感じました。たとえアプリケーションの問題と疑っても、インフラやデータ層の可能性も考慮し、各仮説に対してどの指標やログを確認すれば検証できるか明確にすることで、偏らない客観的な分析が実現されます。 監視の落とし穴は? さらに、システム監視の見直しでは、インフラ層、アプリケーション層、データ層、外部依存という4つの視点に分類し、それぞれで見逃されがちな指標やアラート設定の不足がないかを洗い出す作業を行っています。特に、複数の層にまたがる問題に対しては、層間の関係も意識することで、予兆を捉え、問題が深刻化する前に対策できる体制の構築に寄与していると感じています。

クリティカルシンキング入門

ロジックツリーでシステム開発の要件定義に挑む

思考の偏りを防ぐには? 考えが偏りやすいことと、その防ぐ手段があるという2点が大きな学びでした。 防ぐ手段として、まずロジックツリーについて述べます。以前からロジックツリーという言葉は知っていましたが、「いかにMECE(Mutually Exclusive, Collectively Exhaustive)に分けるか」が大切だと考えていました。しかし、実際にはMECEはあくまで付随事項であり、自分の思考を見える化するのが一番の目的だと感じました。 切り口を考える重要性 次に、「切り口を考える」についてです。目的に応じた切り口を考え、それに沿って思考を進めることの重要性を理解しました。この方法はロジックツリーの上位に位置する考え方で、常に意識する必要があると理解しました。「切り口を考える」は知的体力が必要となる内容だと思うので、これをどのように習慣化し、忌避感をなくすかがポイントだと考えます。 設計前の手法の重要性とは? 証券会社のシステム開発を担当していますが、特に具体的な設計・開発に入る前の「要件定義、プロジェクト計画時」にこの手法を利用したいと考えています。具体的には、以下の点について検討・実行に活用したいです。 - 具体的な要件を引き出す前に、開発対象の業務で一番重要なものは何か - プロジェクト計画を行う上で、一番重要視するファクター(お金なのか、時間なのか、等) - 要件を引き出すにあたり、どのようなコミュニケーション方法や準備が必要か - ステークホルダーの中でどのようなコンクリフトが発生し、それをいかに解決するか 明確化をどう習慣化する? 現在は過去の経験に頼って進めていますが、WEEK1の講義を受け、「目的の明確化」「考えの偏り」「その防止策」の3点を学びました。今後はこれらの点を意識しながら、具体的な作業に着手する前に確認し、学ぶ内容を活用していきたいと思います。 まずは「目的の明確化」を習慣化します。そこから考えるべき論点を洗い出すことが必要です。これまでは思いついたものを無批判に受け入れ、最終成果物の作成まで進めていましたが、今後は立ち止まり、他に論点がないか、どのような視点・視野で論点を洗い出したかを確認し、その後の作業内容を決定していきます。将来的には、上記の作業の中でロジックツリーを活用し、精度を上げられるようにしたいです。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

目的を導くデータの羅針盤

最初に何を明確に? 分析に着手する際、何から手をつけてよいのかわからない状態でしたが、まずは「目的」を明確にし、何を知りたいのか、また改善点につなげるにはどうすればよいのかを意識しながらデータと向き合うことが大切だと実感しました。その上で、データ分析の前段階として、比較対象となる条件を整理し、どの条件や項目を設定するかを精査することが、結果の精度を高める鍵であると理解できました。 整理方法はどうする? 授業からは、細かい点まで明確に比較できるように各要素を分けて整理する方法や、項目を一覧化して理路整然と進める手法を学びました。また、その調査結果の意味や期待される効果について問いかけながら項目を設定する重要性、そして各データ項目ごとの感覚の違いを補うために他のデータを参照する必要性についても示唆を得ました。さらに、数字を加工して割合を算出しグラフ化する際は、情報の性質に応じたグラフ(要素間の割合には円グラフ、上下の数値比較には縦棒グラフ、要素間の比較には横棒グラフなど)を効果的に用いる工夫が求められると学びました。場合によっては、実数そのままで比較したほうが効果的なケースもあるという点も印象的でした。 ビッグデータをどう見る? また、スモールデータとビッグデータの違いに触れ、ビッグデータを扱う際には「クレンジング」に注意し、類似性の高いデータを抽出することで、過去のデータを新たな価値に変えていくプロセスの重要性も認識しました。データ分析は、目的と仮説に基づいた切り口の設定、データ収集、加工、発見、そして結論へのプロセスを着実に踏むことが不可欠で、見えている加工データと状況や根拠に基づいた解釈とを組み合わせることで、より説得力のある分析結果が得られると感じました。 広報戦略はどう考える? 具体的な広報戦略を考える際には、施策を大項目から小項目へと段階的に設定し、戦略の目的に沿ってPRのアイディアを複数仮定しました。その上で、各ツールの選択肢や条件を一覧化し、データを当てはめて比較検討することが効果的であるという実践的なアプローチも印象深かったです。 グループ作業はどう? グループワークでは、見えている加工データに状況や他の根拠・解釈を加えて分析する手法が強調され、その具体的な組み合わせ方や実例について、さらに深掘りして聞いてみたいと感じました。

クリティカルシンキング入門

思考の偏りを超え新しい自分に出会う

当たり前は実践でき? ビジネスの場で重要なのは、「言われてみれば当たり前のこと」をどれだけ意識的に実践できているか、という点です。人間は「考えやすいこと」や「考えたいこと」に無意識に集中してしまう傾向があり、これが思考に制約を与えることがあります。自分の思考には偏りがある可能性が高いことを理解し、それを大前提とすることが重要です。 自己批判の意味は? 「クリティカル」の意味は「批判」であり、その批判の対象は自分自身であるべきです。自分自身に意識を向けることによって、自らの考えをチェックし、もう一人の自分を育て、自分の考えを客観的に見直す習慣を身につけることが大切です。このスキルは独学では身につかず、他者との意見交換を通じて偏りを認識し続けることが有効です。 発想法のコツは? さらに、自分の経験や思い付きだけで発想しないために、効果的な「頭の使い方」を心得ておくことが大切です。「分ける」といった思考方法を活用します。例えば、考え始める際に対になる概念を意識し、そこから発想を広げる方法や、小さな案の共通点を見つけ出し、それを基に新しい発想を考える「具体と抽象のキャッチボール」が有効です。 実行方法はどう? 具体的な方法として、次のような取り組みが挙げられます。部下と課題解決策を一緒に見直し、頭の使い方を意識して多角的に検討した上で実行を指示する。そして、企画や発案の際にはメンバー全員に思考の偏りを自覚させ、共に意識を向けさせることが重要です。また、思い付きや直感に基づく行動を避け、じっくり考えて判断します。そして、お客様にとって何が最良かを考える際、自分一人ではなく他者と意見を出し合って決定することが求められます。 在り方変革は? まず自分自身の在り方を変える必要があります。過去には、自由に発言しているつもりでも常識の範囲内で発言していたり、周囲との調和や感覚を意識しすぎて意見が制約されていました。しかし自分の概念には偏りがあることを自覚できたので、制約された発言では意味がないと気づきました。今後は自ら意識して制約を外します。 意見の受け止め方は? これにより、自分や多くの人と異なる意見に対する受け止め方も変わるでしょう。会社でのミーティングでも少数派の意見に耳を傾け、見逃していたヒントを大切にしたいと思います。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

戦略思考入門

自分も変われる戦略のヒント

戦略の全体像は? WEEK1からWEEK5まで、また動画学習を通じて、戦略思考の全体像を学ぶことができました。特に、目標から逆算する考え方や、プラン作成時に実現可能性を徹底的に検討するプロセスを知り、過去の慣習にとらわれず本当に必要なものかを見極め、不要なものは排除する選択ができるようになっていきたいと感じました。 判断の見直しは? これまで自分の職務に結びつけることを重視してきましたが、今回の学びで仕事以外の場面でも活用できると実感しました。日々の業務に加え、直感やこれまでの経験則に頼った判断を一度立ち止まって見直し、思いついた背景や考えの偏り、抜け漏れがないか確認する習慣を身に着ける重要性を強く感じています。 未来像はどう見る? また、最後のライブ授業で「どういう人になり、どういった人生を送りたいのか」という問いに触れ、自身の職務に偏った考え方から脱却し、広い視点を持つ戦略思考が、組織や社会への貢献、さらには豊かな人生の実現につながることに気づくことができました。 情報活用の秘訣は? さらに、現状分析における情報収集の重要性や、日頃からの情報アンテナの感度を高めておくことが不可欠だと感じています。プランを振り返る際には、現在の状況を正確に把握し、優先順位を決めることが今後の成長につながると考えています。また、自分自身のありたい姿を再検討し、組織から求められることや、自分が本当にやりたいことについて深く掘り下げていく意識が芽生えました。 情報収集の極意は? プラン作成の段階では、必要な情報が何かを検討しながら情報収集を進めることが多く、特に業界全体や競合の動向など、幅広い情報に日頃から触れておくことが重要だと実感しています。情報を収集し、大きな流れを把握することで、必要な情報の選別や深堀りがスムーズになり、プランの精度が高まると考えています。 振り返りで何を掴む? また、プランの振り返りの際には、環境の変化や過去に達成できたこと、反対にできなかったことなどを多面的に分析し、今やるべきこととやらないことを明確に判断していきたいと思います。年間計画の実行状況も振り返りながら、来年度以降の優先順位や興味のある仕事について改めて検討し、自分があるべき姿をブラッシュアップしていくことに意欲を感じています。
AIコーチング導線バナー

「過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right