データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

戦略思考入門

戦略で学ぶ!時間と戦うビジネス学

トレードオフとは何か? 戦略における選択や「捨てる」というプロセスを実践する中で、トレードオフの概念について学びました。これは、何かを追求する際に別の何かを犠牲にしなければならないという理論です。この考え方は、ビジネスだけでなく日常生活でも無意識のうちに実践していることで、とても身近に感じられました。 優先順位の付け方の重要性 ビジネスの場面では、特に時間という限られた資源に直面することが多く、必然的に何かを捨てる選択を迫られます。今回、優先順位の付け方を実践的に学ぶことで、これまで直感に頼っていた判断に客観的な視点を加えることができるようになりました。その結果、判断軸がぶれることなく、問題解決にスピード感を持って取り組むことができると感じました。 スタック・イン・ザ・ミドルのリスク また、コスト・リーダーシップ戦略と差別化戦略というトレードオフの関係にある要素を両立しようとすると、「スタック・イン・ザ・ミドル」に陥るリスクがあることも学びました。 効果的なコンテンツ企画とは? 今後、国際戦略の一環としてイン・アウトバウンドを促進するために、新たなコンテンツ企画を進める予定です。その際、効果的な戦略を考えるとともに、工数と集客効果のバランスにも配慮したいと思います。具体的には、インタビュー企画を検討していますが、広報活動においてはあまり凝った制作をせず、限られた時間内で魅力的なコンテンツを制作することを心掛けています。 媒体選定と効果検証のポイント まずは、どの媒体にコンテンツを掲載するのかを決め、その効率性を考慮します。過去の閲覧数やフォロワー数を参考に、より良い結果を得られる媒体に集中して時間を使い、その後、仮説が正しかったか検証します。そして、予期しない結果が得られた場合には、次回のコンテンツ企画に向けて修正案を練る予定です。

戦略思考入門

実務で学ぶ!戦略的フレームワーク活用

フレームワークの利便性とは? フレームワークを活用することで、情報の収集が網羅的に行え、見落としを防ぐことができると感じています。自分の判断に頼ると、偏った情報や自分に都合の良い情報を選びがちですが、フレームワークは効率的に必要な情報を集められる手助けとなります。 ターゲット設定はどうする? ターゲットを設定する際、具体的にしすぎると市場が狭まり、逆に抽象的だと広がりすぎる印象があります。このバランスについて、他の人の意見も参考にしながら学んでいきたいと思っています。 長期視点での差別化は可能? また、実現可能性や差別化の持続性を判断する際には、即座に取り組めるものもあれば、費用や時間、人材が関与し、長期的な視点が必要となる場合もあります。事例によっては、品質、量、価格、サービスなど、様々な側面での改善策を検討し、優先順位を設定して取り組むことが重要だと感じました。 顧客視点でのニーズ把握 実務を通じて、自分は競合製品との差別化に対する意識が高いと感じています。担当製品だけでなく、疾患領域の課題を検討することで、顧客視点でのニーズを把握できると考えています。製品の視点を疾患領域に変えることで、新たなポジショニングの視点が見える可能性もあると感じます。 将来を見据えた判断とは? さらに、実現可能な策においては、自社の過去の取り組みや製品の動向を把握することで、判断の参考にしています。疾患領域のトレンドを確認し、ガイドラインや学会のトピックスを理解することで、5年から10年後の治療を予測する準備ができます。そして、領域全体の中での適正なポジショニングを考えたいと思っています。 経営層の判断基準を理解する 直近のプランの審議では、経営層の判断基準を議事録から確認し、過去の製品のプランを参照して領域の特性を理解していきたいです。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

戦略思考入門

選択と集中で業務改革を実現!

心情と冷静な分析のトレードオフとは? 現実では、付き合いの長さや関係性、過去の経緯など多くの要素が絡み合い、心情的に優先度を決めていることがあると気づきました。冷静に分析することで、本当に優先度が高いかどうかを判断していく必要があると感じました。 なぜ取捨選択が重要なのか? 1. 捨てることが顧客の利便性を増す場合がある。 2. 昔からの惰性に流されず、常に新しい意見を取り入れることが重要です。トラブルや環境悪化が改善につながることもあります。 3. 餅は餅屋に任せるべきで、垂直統合のデメリットがメリットを上回ることがあります。思い切って専門家に任せる方が良いです。 新メンバーの意見をどう活かす? これらの選択を実践するうえで、3つの観点は当たり前だと考えがちですが、実行に移すのは難しいことがあります。新メンバーの指摘から多くの気づきを得ることができるため、経験豊富なメンバーだけでなく、新しいメンバーの意見を取り入れる機会を増やしたいと考えています。 業務分担と体制はどう見直す? 具体的な事例や惰性から抜け出す重要性についての気づきがよく表現されています。また、新メンバーの意見を積極的に取り入れる柔軟性も素晴らしいと感じます。思考のプロセスや場面をもう少し詳細に描くことで、更なる改善が期待できるでしょう。 正に今、次年度以降の業務分担や体制を整理しており、惰性で継続している業務がないか見直しています。新しいメンバーの意見は的確で、「選択」の考え方を実感しています。社員が担う業務と業務委託する範囲を明確にし、二重のコストや負担を避けるために整理を進めています。組織を統合し、スケールメリットを打ち出すために一時的に業務が複雑になっていますが、優先順位をつけ、継続すべき業務と見直すべき業務を分類していきたいと考えています。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

データ・アナリティクス入門

生の声で伝える挑戦日記

代表値と散らばりとは? 大量のデータを分析する際には、中心的な特徴を示す代表値と、データのばらつきを示す散らばりの両面からアプローチすることが重要です。代表値には、単純平均、加重平均、幾何平均、中央値があり、それぞれの特性を理解した上で適切に活用する必要があります。一方、データの散らばりを把握するためには標準偏差が用いられます。標準偏差とは、平均値から各データがどの程度乖離しているかを示すために、各乖離の二乗和をデータ数で割った値の平方根を意味します。 看護国家試験対策はどうする? 看護師国家試験対策では、4年生進級までの過去の成績を分析し、不得意な科目や分野を特定した上で重点的に補強する方法が提案されます。また、入学試験志願者の選抜においては、成績、出席日数、欠席理由、さらには高校卒業までの活動や志願理由を詳しく分析し、入学前教育に効果的に活かすことが期待されます。 早期支援の進め方は? さらに、早期からの継続的支援として、1年生前期の履修成績を把握した上で夏休み中に補習を実施し、後期終了後にも同様の取り組みを行うことが検討されています。これを各学年で実施することで、4年生にまとめて行う短期間の国家試験対策よりも、より効果的な成果が見込まれます。この取り組みは、大学の教務委員会や国家試験対策委員会に提案し、全教職員の協力のもと、実施体制と行動計画を整えることが前提となります。 書類評価の観点は? 加えて、現在提出される入学試験受験者の書類について、評価の見方や押さえるポイントを明確にすることが提案されています。これにより、入学制度に対するリアリティショックを軽減し、学力不足の傾向に対しても適切な対応策を講じることが可能になると期待されています。現時点では、入試広報部と連携してこの問題に取り組む方針が進められている状況です。

リーダーシップ・キャリアビジョン入門

状況に合わせる最適リーダー術

行動促進の本質は? マネジメントの本質は、組織のメンバーに目標達成へ向けた行動を促すことであり、かつその行動と目的は切り離して考えるべきだと再認識しました。これまで、モニタリングや業務配分、他部門との調整などに重点を置いていましたが、リーダーシップは生まれつきの素質ではなく、取るべき行動に着目し、状況や部下の特性に応じて効果的な行動を選ぶ必要があると感じています。 部下への配慮は? これまで「部下の志向」に注目し、組織の状況、目標の種類、部下の特性や成長過程について検討してきました。しかし、パス・ゴール理論における「パス」を十分に提供できていたか疑問に思い、以下の行動計画を立てることにしました。 状況と目標は? まず、①「組織の状況」「達成すべき目標」および「部下の特性」を再度分析します。頭の中だけでなく、事実を記録して可視化し、あらゆる方向性(特に正反対の観点も含む)から検討します。同時に、パス・ゴール理論における4つのリーダーシップ(指示型、支援型、参加型、達成志向型)の中から、現時点で最も有効なものを見極めるとともに、以前の組織事例に頼りすぎなかったかを反省します。 リーダーシップ型は? 次に、②リーダーシップの型は一つに固定されるものではないと考え、状況に応じた使い分けができるよう、自分を律するスキルを磨くことに努めます。従来の癖が出やすい部分があるため、柔軟に対応する姿勢を身につけたいと考えています。 信頼の距離感は? さらに、組織の環境要因の捉え方や判断方法、部下の適正要因を把握するための参考書籍などについても検討しており、過去に受けた指導を通じて部下との距離感が変化した経験も踏まえています。皆さんは、適切なリーダーシップを発揮するために、どのような距離感を意識されていますか?

戦略思考入門

思考の深さが生む経営革新

今回変更する振り返り文章 本質は本当に大切? 本質やメカニズムの重要性を理解するための課題に取り組みました。単に耳にした言葉を引用するだけでは、相手を説得することは難しいと感じました。今回の取り組みでは、規模の経済性を活かすためには、「生産量を増やす」や「原材料の発注量を増やす」といった基本的な提案だけでなく、深く考える必要があると学びました。この経験を通じて、多角的な思考の重要性を改めて実感しました。 考え抜く意識は十分? 過去の学習から、「考えて考え抜くこと」が最も重要であると理解しました。規模の経済性については、コスト低減を考える際、一部のコストだけを抑えるのではなく、トータルコストの低減を目指す必要があります。例として、コスト単価を下げて発注量を増やすと、保管料が増える可能性があります。全体としてコストが抑えられているかを確認するため、まず全体のコストを把握し、細分化して分析することが重要です。そして、どこのコストが下がれば他のコストが上がる可能性があるか、全体を俯瞰する視点が必要です。 コストは細分化できてる? 規模の経済性を考えるうえでは、コスト全体を把握し、できる限り細分化します(事業別、商品別などの軸での細分化)。次に、考えられるコスト低減策を洗い出し、全体を俯瞰して総合的に判断することが大切です。この際、変動費・固定費も意識して細分化を行います。 習熟度は十分? 習熟度効果については、まず業務内容にかかる時間を洗い出します。時間がかかる業務に対しては、マンパワー不足なのか、習熟度不足なのかを検討します。マンパワー不足の場合は生産性の向上を目指した人員配置を考え、習熟度が不足している場合は、慣れや経験を積む時間が必要です。さらに、教育不足であれば育成も視野に入れることが求められます。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

「過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right