クリティカルシンキング入門

資料作成の楽しさを再発見!

グラフ作成の基本は? グラフを用いた資料作成において、まず基本的な要素であるグラフタイトルや単位に漏れがないかを確認することは、最低限のマナーとして不可欠です。また、自分が伝えたいことが選択したグラフによって適切に相手に伝わるかどうかを確認することも重要です。過去には、文章にグラフを差し込むことが多々ありましたが、それが本当に今回の目的に沿ったものになっているかをしっかりと確認できていないことを反省しています。 メール表現の工夫は? メールを書く際、言いたいことを強調したいあまりにフォントサイズを変えたり、太字にしたり、色を変えたりしていましたが、相手がそのような表現からどのような印象を受けるかを理論的に学び直しました。これを踏まえて、タイトル、色、アイコン、フォントの意味を考慮しながら資料作成に取り組みたいと思っています。 スライド作りはどう? スライドを丁寧に作るためには、グラフの見せ方や文字の表現といった基礎を固めた上で、メインメッセージと情報の順番を合わせることが肝要です。さらに、メインメッセージがより伝わりやすくなるよう、事実にプラスして一言添えることを意識します。読者の関心を引く工夫として、アイキャッチや文章の硬軟、読みやすい体裁を心がけることも必要です。 提案資料作成の極意は? 提案資料を作成する際には、WWH(What-Why-How)での資料作成を基本にしつつ、新たに学んだ内容を活用したいと考えています。メール作成においても、読み手が内容を理解しやすく、次第に読み進めたくなるようなアイキャッチと体裁を意識し、硬軟のバランスを大切にします。 セルフチェックはどう? 資料作成のセルフチェック項目としては、以下のことを確認しています。グラフタイトルや単位の漏れがないか、選択されたグラフが相手に伝わるものかどうか、資料全体としてフォントや色が適切かどうか、メインメッセージと情報の順序が合っているか、そして追加メッセージが必要であるかなどです。メール作成においても、アイキャッチの適切さ、文章の硬軟、読みやすさを確認していきます。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

戦略思考入門

持続可能な競争優位性を実現するための秘訣

戦略思考の気付きは何か? 今週の戦略思考で一番気付かされた点は、差別化された状態をいかに維持し続けられるかという点です。あるひとつの時点で見れば、当然新製品を導入するタイミングは自社有利に働きますが、顧客課題を解決できるものであれば、競合も同様のサービスや商品を提供・追従してくる可能性が高まります。そうなると競争の均衡が生じ、価格競争に陥りやすくなります。 継続的な競争優位性はどう維持する? 継続的な競争優位性を維持していくためには、本当の意味での自社の強みを理解し、その強みを生かす必要があります。それが製造ノウハウや技術力であるか、優れた営業スキルを持った人材か、過去に権利化された特許かもしれません。自社に関しては当然一番情報にアクセスしやすい立場にあるので、その強みをしっかりと見極め、いかに競争優位性を維持できるかをデザインしていく必要があります。デザインの見直し頻度も含めて戦略立案・推進していきたいと考えます。 自社の歴史から学ぶ方法は? 自社の歴史を振り返り、競争優位性が保てている商品・サービスとその理由、および保てなくなってきた商品の理由をいくつかのサンプルをピックアップして分析・評価してみたいと思います。その結果、本当の意味での自社の強みを理解し、それを事業戦略立案や商品戦略策定の根拠として活用します。また、それによって関係部門の役員への説得材料としても活用したいと考えています。 来季経営戦略会議に向けた計画は? 11月に全社役員を含む来季経営戦略会議が予定されており、そこをひとつのマイルストーンとしています。そこで戦略方針の提案を行い、承認を得るための計画は以下の通りです。 8月~9月:情報収集・分析。特に最も情報が取りやすい自社で競争優位性を保てているものの分析・評価。各種フレームワークを用いた外部環境・内部環境分析の実施とまとめ、特許情報も含む。 10月:戦略提案内容について関係部門との内容擦り合わせ。 11月:経営戦略会議での提案。 この計画を実行し、持続可能な競争優位性の確立を目指します。

クリティカルシンキング入門

視点を広げる新しい思考の旅

自分の頭、どう使う? クリティカルシンキングにおいて重要なのは、自分自身の思考を客観的に見つめ、「もう一人の自分」を育てることです。人は無意識のうちに「制約」や「偏り」に誘導されやすいため、物事を俯瞰的に捉える力が求められます。これには、視点・視座・視野の広さが必要です。「頭の使い方を知る」ということが大切であり、これがクリティカルシンキングの本質です。 過去の選択は? 以前の私は、顧客から提示された「課題」に対して深堀をし、本質的な問題を見つけ出せることもありました。しかし、過去の経験や「従来の対応方法」に縛られていた場面が多々あったことを反省しています。これに対処するために、多くの関係者とコミュニケーションを取り、全体を把握するよう努めていました。しかし、今回学んだことから、「課題」を解決すべき問題として捉える前に、まず全体を俯瞰的に見渡し、真の課題を把握することが重要であると再認識しました。このようなアプローチを習得するのは時間がかかるかもしれませんが、より効率的な解決策を見つけるために、物事を客観的に見る姿勢を身につけたいと思います。 本当の問いは? 初めの一歩として、自分自身への問いかけを意識していきたいです。 1. 常に客観的に物事を見るよう心がけること - 提示された課題は本当に解決すべきものか? - これを検討する目的は何か?それを明確にした上で考える。 - 全体を見渡せているかを確認する(視点・視座・視野)。 - 自分の意見の根拠は何か?偏りや制約がないか検証する。 - その考えは直感や経験値に依存していないか、証明できるか? 2. 具体的でわかりやすい表現を心がける - 専門用語を多用しない - 誰にでも理解しやすい表現か - 必要以上に抽象的でないか - 問題がすり替わっていないか このように、自分自身への問いかけと具体的でわかりやすいコミュニケーションを通じて、より効果的なクリティカルシンキングを磨いていきたいと思います。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

リーダーシップ・キャリアビジョン入門

リーダーシップの選択と挑戦

リーダー機能は整っていますか? リーダーシップとマネジメントの機能について、社内で何が整っていて、何が不足しているか、そして何ができているかできていないかを整理することができました。これにより、現状の把握が明確になりました。 誰にどう伝える? また、パス・ゴール理論を通じて、状況に応じて誰に何をどのように伝えるべきかがシンプルに理解できました。講義を受けたことで、各要因に基づいた具体的な行動計画が立てやすくなりました。 最適な行動は? 過去には状況に応じたリーダーシップの型をイメージして行動していましたが、その結果、逆にマイナスの影響を与えてしまった可能性もあると振り返りました。そのため、あの場面でどのような型の行動をとるべきだったのか、改めて考える大切な機会となりました。 改善策はどうなる? 今後、業務改善に向けたプロジェクトを二件進める予定です。メンバーの状況や外部の環境に合わせ、指示型と支援型のリーダーシップをうまく使い分けようと考えています。特に、一緒に業務を進めるメンバーが学生であるため、モチベーションの維持がリーダーシップにおいて重要なポイントになると仮説し、実施後に振り返りを行っていきたいと思います。 メンバーの位置は? また、業務を共に遂行するメンバーについては、マネジリアル・グリッド理論の視点からどの位置にあるかを想像し、適切なリーダーシップのスタイルを検討しました。その結果、週次ミーティングの中で目標達成や業務改善に向けた具体的な行動の合意、そして完了時期の確認を行っています。 遠隔管理の変化は? さらに、異なる拠点で業務をしているメンバーとのミーティングにも取り組んでいます。現在、遠隔でマネジメントを担当している二名のメンバーのうち、1名は最近復職したため、本来は支援型のリーダーシップが適していたはずですが、しばらくは指示型のリーダーシップを実践し、どのような変化が生じるかを観察しながら業務依頼を行いたいと考えています。

データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

クリティカルシンキング入門

もう一人の自分を育てる学びの旅

学びはどんな内容? WEEK1の学びを整理してみて、以下のような重要なポイントに気づきました。 批判的思考って何? まず、「もう1人の自分を持つ批判的思考」が重要です。思考には偏りがあり、ついつい自分が考えやすい方に流されがちです。しかし、みんなが同じように考えているとは限らないことを意識すべきです。そのため、主観的ではなく、客観的に考える姿勢が必要です。思いつきで判断するのではなく、説明責任を果たすために3つの「視」(視点、視座、視野)を使って視野を広げることが求められます。 現状分析はどう? ケースワークを通じて学んだこととして、現状を細かく分析し、理想的な姿をしっかりと見据えることが大切だと感じました。「問い」を意識し、今何を課題にするべきかを見極めることを忘れてはいけません。フレームワークを活用することはもちろん重要ですが、それに固執しすぎない柔軟な姿勢も必要です。 他者の意見はどう? グループワークを通じては、客観的に物事を考えるために他者の意見を聞くことが近道であると感じました。相手がその考えに至った理由を聞くことで、今後自分が客観的に考えるためのヒントになります。 営業会議はどう進む? 営業会議においては、数値目標達成に向けて行動を決める際、過去の経験に頼りすぎると、やるべきことが毎回同じになってしまう傾向があると気づきました。このため、課題を特定する際には、まず要因分析を丁寧に行い、1枚の紙に簡潔にまとめて、伝えるべきことを結論から述べ、その後に根拠を伝える姿勢が効果的です。 書類作成ってどう? 提案書や報告書においては、短くまとめることが重要です。提案書はワンペーパーにまとめ、視覚的に認識しやすいよう工夫します。報告書も同様に、ワンペーパーで読み手の立場に立って、文章やグラフを工夫することが望ましいです。 メールは要点ある? 最後に、メール発信時は、指示が長くなりがちなので、簡潔に結論を先に述べ、理由は3点以内にまとめることを心掛けます。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。
AIコーチング導線バナー

「過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right