デザイン思考入門

デザイン思考でCX・EXを劇的向上

デザイン思考の学びとは? 今回の授業を通じて、デザイン思考のステップを学ぶことができ、ワークを通じてその理解を実践的に深めることができました。特に印象的だったのは、「自分の気分を色で表現する」というアプローチです。この手法は非常に斬新であり、言葉では伝えづらい感情や思考を視覚的に捉えられる点が非常に興味深かったです。 CXやEX向上への活用法とは? デザイン思考の考え方は、普段の業務で扱う顧客体験(CX)や従業員体験(EX)の向上に直接活用できると感じました。例えば、ホテル業界のクライアントが抱える「オンライン上の旅行代理店の評価向上」や「レビュー分析の効率化」といった課題には、ただアンケート結果を分析するだけでなく、実際の宿泊客がどのような体験をしているのかをきちんと理解する必要があります。デザイン思考を応用し、宿泊客のペルソナを作成し、彼らの視点から課題を捉えることが重要です。これには、既存のフィードバックに加え、インタビューや観察を通じた定性的な情報を収集し、体験の課題を明確に定義して創造的なソリューションを検討するアプローチが有効です。これにより、より本質的な改善策を提案できる可能性があると考えています。 ペルソナ作成の重要性とは? デザイン思考のフレームに沿ったソリューション提案を試みたいと思います。まず、顧客のペルソナを作成する段階では、クライアントの現状を整理し、ターゲットとなる顧客層である宿泊客や従業員の特徴を明確にします。そして、過去のアンケートデータやレビューを分析し、代表的なペルソナを作成します。このペルソナをクライアントと共有し、実態とのズレがないか確認します。 定性的情報の収集方法は? 次に、定性的な情報を収集する段階では、クライアントに宿泊客や従業員へのインタビューを提案し、必要ならホテル現場を見学して宿泊客の行動やスタッフの対応を観察します。また、オンラインの口コミやレビューを詳しく調べ、テキスト分析を使ってパターンを把握します。 課題の定義と可視化の仕方は? 顧客体験の課題を明確に定義する段階では、収集した定量データと定性データをもとに、顧客の不満や期待値とのギャップを整理します。課題を「宿泊前」「滞在中」「宿泊後」に分けて可視化し、クライアントと共有します。そして、影響度と実現可能性を基に、クライアントが優先して取り組むべき課題を整理します。 創造的な改善策の検討方法は? 最後に、創造的なソリューションを検討する段階では、他業界の成功事例やデザイン思考のフレームワークを活用し、新しい施策を考案します。クライアントとワークショップを実施し、改善策を一緒にブレインストーミングし、小規模なテスト運用を提案して、データをもとに改善を重ねるアプローチを取ります。 これらのプロセスを通じて、デザイン思考の視点を活かしてクライアントにとってより価値のあるソリューションを提供できるようになりたいと考えています。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

データ・アナリティクス入門

再発見!数字が語る学びのヒント

講義内容は何を学んだ? 必須部分の講義を受ける中で、これまで一部しか活用できていなかった知識に改めて気づくことができました。グループワークの準備で実践した際にも、新たに把握すべき点があるように感じました。 関連動画はどう見る? 関連動画が充実しているため、改めて視聴して理解を深めたいと思います。 代表値の多様性は? 代表値については、単純平均だけでなく、加重平均や幾何平均、中央値が存在することを学びました。また、全体感を把握するための円グラフや、構成要素の割合とばらつきを見るヒストグラム(標準偏差を用いる)の活用も理解できました。 散布図の意義は? 散布図は、2つの変数の関係性を探るグラフとして有効であると実感しました。相関関係と因果関係は切り離して考える必要があり、関係性は相関係数など数式で表現できる点も印象的でした。 度数分析のコツは? 度数分析では、ヒストグラムを用いて集団の特性を把握する方法について学びました。正規分布だけでなく、必ずしも正規にならないケースや、階級幅の取り方(スタージュの公式など)にも触れることができました。 時系列の変化は? 時系列分析では、過去のデータから将来の予測を試みる手法として、横軸に時間、縦軸にデータをとることでトレンドの変化や予測外の出来事の影響を確認する方法を学びました。傾向変動、循環変動、季節変動、不規則変動に注目し、直近と長期のデータ双方に着目する重要性も理解しました。 パレート効果は何か? パレート分析では、20/80や30/70の法則を棒グラフと累積量を示す折れ線グラフで確認する方法を学び、場合によっては10/90となることもあると知りました。 ウォーターフォールは? ウォーターフォールチャートについては、複数の構成要素を階段状に表現し、正負の要素を分けて時系列での変化を詳細に読み取る手法が紹介されました。ただし、場合によっては円グラフや棒グラフの方がシンプルで分かりやすいこともあるため、状況に応じた使い分けが大切だと感じました。 知識活用の方法は? 今後は、単純平均だけに頼らず、円グラフやヒストグラム以外の表現方法も意識して活用していくとともに、学んだ知識を実務に取り入れ、部下や仲間と共有しながら継続的にアウトプットしていきたいと思います。 計算苦手を克服する? 数字や計算式に苦手意識があるため、今後は復習を重ね、参考図書を活用して学びを深めるとともに、グループワークや他の受講生の振り返りを参考にしながら、データの読み取り方を改善し、最終的には実践的な分析を通して意思決定につなげていきたいと思います。

マーケティング入門

潜在ニーズを探る秘訣と実践方法

GAiLで何を学んだ? GAiLと動画学習を通じて、多くの学びがありました。過去に実践していたこともありましたが、うまく活用できず、深く掘り下げることができていなかったため、事実をつかみ切れていないことに気づきました。 顧客ニーズはどう捉える? 顧客のニーズを深堀し、真のニーズを捉えることは重要ですが難しいと感じています。顧客自身が欲求に気づいていないため、単純な質問では引き出せないのです。しかし、真のニーズを探り出す手法について学ぶことで、その意図をよく理解できました。 行動観察の効果は? まず、エスノグラフィー(行動観察調査)は、消費者の潜在ニーズや課題を発見するために有効であり、言葉以外の情報が主な分析対象であることが分かりました。そして、デプスインタビューでは、報酬の影響で真のニーズが引き出しにくくなる点を知り、これを避けるためにラポール形成が有効だと理解しました。 ウォンツ追求に落とし穴は? 真のニーズをつかめないままウォンツを追求すると、価格競争に巻き込まれたり、的外れな商品開発に繋がる恐れがあります。アンケートや顧客購買データの分析、インタビューだけでは真のニーズを捉えきれないと、改めて認識しました。 経験から何を学ぶ? 特に、サービスを提供する立場として、顧客のウォンツに過度にフォーカスしていたことに気づきました。過去の業務改革プロジェクトでも、潜在ニーズの抽出が不十分だったことを反省しています。今後は、深堀りできる質問を通して真のニーズに到達することを目指します。 手法をどう実践する? さらに、実務の流れを理解し、エスノグラフィーをより効果的に活用したいと思います。ウォンツの裏にある潜在ニーズや課題を発見するため、これまで学んだ手法をどんどん活用することで、より良いサービスの提供や提案を可能にするつもりです。 新たな挑戦は何? まずは手法に慣れることから始め、さまざまな場面で活用できるように努めます。具体的には、以下の点に取り組んでいきます: 1. 身近な商品やサービスについて、真のニーズを想像し実践に活用する。 2. 社内提案時に顧客(上司)の真のニーズを捉えるため、エスノグラフィーを導入し実践する。 3. 状況に応じて質問リストを準備し、相手の返答を具体的にイメージして備える。 4. 顧客先ではラポール形成をして顧客ニーズを探り、具体的な質問で深堀する。 成功と失敗の振り返りは? これらの取り組みを通じて、成功と失敗の経験を纏め、成功した点は今後も継続し、問題点は振り返り次回に向けて改善します。

リーダーシップ・キャリアビジョン入門

指示から支援へ―リーダーの転身

リーダーと管理の違いは? リーダーシップとマネジメントの違いについて学び、リーダーシップは変革を推進し、長期的なビジョンの提示やメンバーの統合を担う一方、マネジメントは計画や予算、組織の人員配置などルールに基づいて効率的に運営する点にあると理解しました。現代の不確実な環境では、目的や状況に応じた使い分けが重要だと実感しています。また、以前「無意識で人をマネジメントする」という表現を用いていた自分の考えに誤りがあったことを学び、大変有意義でした。 パスゴール理論はどう活く? これまでの自分の行動が、パスゴール理論を通して明確に整理されたことも大きな収穫です。業務経験が浅い若手や中途社員に対しては、これまで指示型のアプローチを取ってきた一方で、彼らが成長するにつれて支援型へとシフトしていたことに気づかされました。一方で、仕事全体や環境要因の把握が十分ではないと感じたため、仕事の背景や現状分析により注力する必要性を再認識しています。 柔軟性はどう考える? また、マネジリアルグリットに関する学びを通して、人間への関心と業績への関心という自分の特性にも気づかされ、状況や相手に応じた柔軟な対応が求められると感じました。 新リーダーの初手は? 新たに未経験分野のチームリーダーを任されたことから、まずは「どんな仕事か」を理解するために環境要因の把握と分析を行っています。リーダーとしての4つの行動を実践するためには、まず部下の仕事の進め方や能力を観察し、適切な対応を見極めることが重要だと考えています。これまで経験の浅い部下には指示型で接してきましたが、成長に伴って支援型へ移行し、ゴールを明確にしながら自律的に考えて行動できるよう支援していきたいと思います。 チーム状況はどう把握? 新チーム発足の初期段階においては、まず次の取り組みを予定しています。まず、チーム全体の環境要因を分析し、市場やクライアント状況を理解するために、営業同行や過去データを活用して状況を把握します。次に、各メンバーとの面談を通じて、仕事に対する考え方や強み・弱み、価値観を聴取し、普段の業務を観察しながらパスゴール理論のどのアプローチが適しているかを検討します。また、チーム会などでゴールを共有することも重要だと考えています。 信頼構築のコツは? 基本的には、新チーム発足時という状況を踏まえ、まずはメンバー一人ひとりに興味を持ち、会話を重ねながら観察し、最適な関わり方を模索することで、信頼関係を築いていきたいと思います。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

「過去 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right