データ・アナリティクス入門

仮説が拓く自分発見の旅

仮説はなぜ重要なの? 仮説を持つことは非常に重要です。物事を早急に結論づけるのではなく、複数の視点から検証し、多角的に物事を捉えることが大切です。 結論への仮説は? 具体的には、結論に向けた仮説と問題解決のための仮説の二種類を考えます。前者は提示された論点に対する仮の答えとして、後者は実際に問題を解決するための道筋として役立ちます。 仮説の意義とは? 仮説を考える意義は大きく三点あります。まず、仮説を立てることにより検証マインドが向上し、説得力のある議論が展開できるようになること。次に、問題に対する関心や意識が高まる点。そして、仮説をもとにした検証プロセスが、最終的な結論に至るスピードアップに寄与することです。こうした仮説検証のプロセスには、アンケートやテストなどの具体的な手順を踏むことが有効です。 なぜ多角的に検証する? また、クライアントのブランドリフトの結果や売上の変動を見た際に、すぐに結論を出さず、なぜその結果が生じたのかを複数の切り口で検証していく必要があります。検証の際は、過去、現在、未来という時間軸に沿って仮説の内容が変化する可能性も考慮することが重要です。 検証の手順はどうなる? まずは情報やデータを収集し、各因子が売上や認知にどのように影響したのかを多角的に検証してください。その手段として、相関分析やヒストグラム、グラフなどによるデータの可視化、さらにはインタビューや簡易調査の実施が効果的です。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

クリティカルシンキング入門

論理と実践で挑む成長ストーリー

視点をどう広げる? 先入観や過去の経験に左右されず、偏った考えに陥らないことが非常に重要だと感じています。常に多角的な視点で問題にアプローチするため、MECEの原則に従って要因を整理し、重複なく抜け漏れのない議論を進める必要があります。また、問題解決のプロセスでは、目的意識をしっかり持つことが基本です。目的を見失うと、本質ではなく細部にとらわれがちになるため、常に問い続ける姿勢が真因に迫るための鍵となります。そして、学んだことを実践し、反復することで自分自身を鍛え上げることが大切だと考えています。 業務推進はどう進む? 現在、私が取り組んでいる業務推進上の問題や課題の解決活動においても、これらの考え方を実務に活かしていきたいと思います。現状の組織運営上の課題を明確にし、その本質を突き止め、再発防止策をしっかりと構築する仕組み作りに努めています。改善メンバーとの日々のディスカッションを通じ、ロジカルに問題に向き合う環境を創出することで、組織全体の進化と若手メンバーの育成にも繋げていきたいと考えています。 クリティカル思考はどう? また、業務にクリティカルシンキングを取り入れることは必要だと認識しています。実際に導入する際、業務全体の時間が一時的に増加する可能性はあるものの、問題の本質にたどり着き、解決および再発防止が実現できれば、その増加は一時的なものであると自分なりに結論付けています。

デザイン思考入門

デザイン思考と共感で創造力を育む

デザイン思考で効果的に話し合うには? 「新しいまな板をデザインする」というテーマの下で、グループと共に作業工程を話し合いました。私はデザイン思考のステップを把握しているつもりでしたが、一部が抜けてしまい、ディスカッション中に効果的な発言ができず、グループの意見をまとめることも困難でした。その後、先生の指導を受けてデザイン思考のプロセスを再確認し、協働と共感が重要である各ステップについて再学習しました。また、「万人向けのものは誰にも刺さらない」という言葉から、現在のパーソナライズ化の進展を学び、デザイン思考の重要性を改めて実感しました。 パーソナライズ化はどのように実現する? 私はヒューリスティック評価やユーザー調査を担当する際、課題を見つけることはできても、改善案を提案する際に万人向けのアイデアばかりが浮かんでいました。これを改善するために、「協働」と「共感」を意識しつつ、パーソナライズ化することを心がけ、万人向けに留まらない提案を目指したいと考えています。 ターゲット層を明確にする理由は? 過去にはヒューリスティック評価やユーザー調査を行う際に、「パーソナライズ化」を十分に意識していないことに気づきました。今後は、ターゲット層を明確にしたうえで、改善と提供するべき内容を考慮し、パーソナライズされたサービスの改善提案ができるよう、意識を変えていきたいと思います。

データ・アナリティクス入門

仮説整理で未来を切り拓く

問題解決の秘訣は? 問題解決の手順として、「What(問題は何か)」「Where(問題はどこにあるか)」「Why(問題はなぜ起きたか)」「How(問題はどう解決するか)」の4ステップを学びました。これまでなんとなく行っていたことやできていたことも、言語化することで抜け漏れなく整理でき、仮説や結論に対する自信が深まりました。 仮説思考はどうする? また、仮説思考については、問題解決の仮説と結論の仮説があり、それぞれに過去・現在・未来の視点が存在するという考え方を知り、とてもすっきりしました。これまで様々な場面で仮説を立ててきましたが、今回の整理方法を取り入れることで、何を考えればよいかがすぐに浮かぶようになりました。 計画立案を学ぶ? 事業計画の立案のプロセスにおいては、これまでなんとなく進めてきた作業を、今回学んだ解決のステップとフレームワークを意識して取り組んでいきたいと思います。自分で考えるだけでなく、他者に説明する際にも納得してもらえるよう、言葉にして伝えられる方法として活用していきます。 課題整理は進んでる? さらに、事業計画の立案にあたって複数の課題と対策が存在する中で、重要度の高い順に今回のステップやフレームワークを適用し、ゼロから考え直すことで、問題を正しく捉え、解決策が十分かどうかを抜け漏れなく検討していきたいと考えています。

クリティカルシンキング入門

イシューを見抜く成長の軌跡

どうやってイシューを特定する? 進め方としては、まず答えを出すべき問い、すなわちイシューを明確に特定します。その後、論理の枠組みを考え、主張を適切な根拠で支えるという基本の流れを踏むことが重要です。作業を進める中で、イシューを常に意識しながら進めるべきであり、過去にはイシューから逸脱したまま次の作業に移ってしまった経験があり、今後はその点の改善が求められます。 なぜ顧客評価に課題が? また、顧客評価で問題が生じた場合や戦略がうまくいかない状況では、単なる対症療法にとどまらず、根本的な問題が何であるかを特定し、メンバー間で共有することが必要です。特に、エンジニアの方々と仕事をする際には、視点が異なることが多いため、まずは共通してイシューを明確にし、現在の状況と今後の方向性をしっかり合わせることが大切だと感じました。 どうやって情報整理をする? さらに、各顧客ごとにイシューを特定し、現状理解のためにMECEやデータ分析を実施すること、そして顧客との面談前や会議での参加者間のゴール設定が求められます。資料作成の際は、まずデータを整理し、その後報告資料の構成を考え、スライドごとのメッセージを作成していくという流れを守り、順番を変えないように進めることが重要です。会議中もイシューから逸脱しない進行を意識することで、解決策へと着実に導くことができると感じました。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

仮説で切り拓く学びの未来

仮説の種類は何か? 仮説は、目的達成のための仮説や問題解決への仮説という2種類の仮説と、過去・現在・未来の視点を組み合わせた全6通りに大別されます。 複数仮説の効果は何? 仮説思考においては、複数の仮説を立てることと、その網羅性を意識することが重要です。網羅性を確保するためには、3C(Costmor、Competiter、Conpany)といったフレームワークを用い、さらにConpany分析の詳細については4Pの視点から整理することが有効です。 未来検証の焦点は? 未来型の目的に対する仮説検証では、目的達成のためにどのような考察や分析が必要かを事前に整理します。例えば、ある番組が視聴率を獲得できるかという問いに対しては、定型的な分析に入る前に3Cや4Pのフレームを用いて、どの部分にボトルネックが存在するのか、またそのボトルネックをどの程度克服できるのかという視点で考察を進めることが求められます。 仮説整理の進め方は? 依頼された仕事に取り組む際は、まずそれがどの仮説に該当するかを整理し、問題点についての仮説検証を行います。具体的には、WHAT、WHERE、WHY、HOWの順に問いを整理し、すぐにWHEREに入らないように注意します。そして、仮説の網羅性を保つために、フレームワークを意識しながら整理資料を作成することが推奨されます。

戦略思考入門

実務革新を支える分析フレームワークの力

フレームワークはどう見る? 複数のビジネスフレームワークの概要や活用方法を学ぶ中で、各フレームワークを実務にどう活かすかについて深く考える機会となりました。自分自身の思考も大切ですが、過去の経験に頼ると見落としがちな視点もあるため、フレームワークを通じて多角的に物事を分析することの重要性を実感しています。 3C分析はどう捉える? 現在、3C分析に取り組んでいますが、特に他社の分析が難しいと感じています。得られる情報は表面的な部分も多く、より具体的かつ同じ粒度で市場、顧客、自社を捉える必要があると考えています。今後は、可能な範囲で深く掘り下げることで、より実践的な分析ができるよう努めたいと思います。 SWOTの見直しは? 一方で、SWOT分析については、本当にそれが強みであるのか、または見えていない弱みがないかを丁寧に検討していくことが肝心だと感じています。社内にとどまることで陥りがちな固定観念にとらわれず、常識を見直して深堀りを進めることが求められると考えています。 今後の対策はどう? これからは、各フレームワークを正しく理解し活用することを目指します。特に3C分析では、3つの要素を同じレベルの粒度で徹底的に分析し、その結果については上司とも共有し、認識のズレを解消することで、より実務に即した取り組みを進めていきたいと思います。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

「過去 × 現在」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right