データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

戦略思考入門

新しい知識でビジネス成功の道を拓く

新しい知識を得る喜びは? 今回のナノ単科では、聞きなれない言葉が多く、新しい知識をたくさん得ることができました。例えば「返報性」「事業経済性」「コングロマリットディスカウント」「規模の経済性」「規模の不経済」「習熟効果」「範囲の経済性」「ネットワーク経済性」といった用語があります。 ビジネス定石の理解が進む これまで「なんとなくそんな感じ」と思っていた事象が、実際にはビジネスの定石であり、それぞれ名称のあるメカニズムだということがわかりました。これらを言語化できるようになったことで、非常にスッキリしました。 全体感を把握する重要性 この学びを通じて、フレームワークを活用するだけでなく、ビジネスの法則や時代の流れといった全体感を今・過去・未来と常に把握しておくことの重要性を感じました。 美容業界での実践は? 特に美容メーカーに勤務しているため、規模の経済性やシナジー効果、範囲の経済性の重要性を強く実感しています。これらを踏まえて、新商品のアイデア出しを進めていきたいと思います。また、人材も範囲の経済性の一部であることを学びました。小さな単位ではありますが、マネジメントする人員に対して最も効果的な業務を割り当て、シナジー効果を期待しながら進めていきたいです。 未来を見据えた戦略設計とは? 規模の経済性を最大限に活用するためには、在庫リスクの視点も持ちながら「いつまでに何個売れそうか」の予測を立てて在庫発注依頼を行います。その際、プロモーション戦略の全体像を描いておくことが必要ですので、常に現在と未来にアンテナを張っておきたいです。 購買心理学の重要性を学ぶ さらに、ビジネスの法則には人間の心理や脳科学が絡むことが多いと感じました。特に返報性を例に挙げると、その重要性がわかります。今後は購買心理学なども勉強していきたいと考えています。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

生の声で伝える挑戦日記

代表値と散らばりとは? 大量のデータを分析する際には、中心的な特徴を示す代表値と、データのばらつきを示す散らばりの両面からアプローチすることが重要です。代表値には、単純平均、加重平均、幾何平均、中央値があり、それぞれの特性を理解した上で適切に活用する必要があります。一方、データの散らばりを把握するためには標準偏差が用いられます。標準偏差とは、平均値から各データがどの程度乖離しているかを示すために、各乖離の二乗和をデータ数で割った値の平方根を意味します。 看護国家試験対策はどうする? 看護師国家試験対策では、4年生進級までの過去の成績を分析し、不得意な科目や分野を特定した上で重点的に補強する方法が提案されます。また、入学試験志願者の選抜においては、成績、出席日数、欠席理由、さらには高校卒業までの活動や志願理由を詳しく分析し、入学前教育に効果的に活かすことが期待されます。 早期支援の進め方は? さらに、早期からの継続的支援として、1年生前期の履修成績を把握した上で夏休み中に補習を実施し、後期終了後にも同様の取り組みを行うことが検討されています。これを各学年で実施することで、4年生にまとめて行う短期間の国家試験対策よりも、より効果的な成果が見込まれます。この取り組みは、大学の教務委員会や国家試験対策委員会に提案し、全教職員の協力のもと、実施体制と行動計画を整えることが前提となります。 書類評価の観点は? 加えて、現在提出される入学試験受験者の書類について、評価の見方や押さえるポイントを明確にすることが提案されています。これにより、入学制度に対するリアリティショックを軽減し、学力不足の傾向に対しても適切な対応策を講じることが可能になると期待されています。現時点では、入試広報部と連携してこの問題に取り組む方針が進められている状況です。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで見つける自分らしさ

キャリア診断はどう? 今回学んだキャリアアンカーですが、自分自身の診断結果を見ると「経営管理コンピタンス」が最も高く、続いて「奉仕・社会貢献」と「生活様式」にも比較的高い傾向が見られました。現状とある程度合致していると感じる一方、評価にバイアスがかかっている可能性も否定できません。本来であれば他社からのインタビューを交えた評価が理想ですが、周囲にキャリアアンカーについて詳しい方がいないため、今後は私自身がアウトプットを行い、知識の共有と業務への活用に繋げたいと考えています。 業務変化はどう見る? キャリアサバイバルに関しては、各部署で過去に定めた職能要件などが一定の基準となっているかもしれません。しかし、生成AIの登場により業務の処理方法は日々変化しており、その都度最新の技術情報をアップデートしていく必要性を感じています。自分自身の軸や価値観をしっかり把握し、今後の5年、10年を見据えた際に、現在何をすべきかを改めて考える必要があると実感しました。 キャリア研修はどう? また、看護部門のキャリア研修ではキャリアアンカー診断がすでに実施されているため、事務部門においてもキャリア研修の一環としてしっかりと取り入れることができればと考えています。さらに、キャリアサバイバルに必要な知識やスキルについては、既存の職能要件書を基に、各部署の業務習得や今後のスキル向上に役立てることが望ましいと感じました。 面談はどう進む? 部下とのキャリア面談を実施する際に、もし自分自身のキャリアに対して迷いや不満(転職の検討など)がある場合、良い面談を行うのが難しくなるように思います。実際にそのような経験があった方がいらっしゃれば、どのように対応されていたのかをお聞かせいただければ幸いです。

マーケティング入門

旅行商品のポジショニングで新たな価値発見を探る旅

商品変更のコストとリソースは? 一般的に他社との差別化を考える際、まず商品そのものの変更(内容・成分・機能・パッケージなど)や販促の工夫(インフルエンサーとのタイアップ、CM、店舗)が思いつきがちです。しかし、商品そのものを変更すると、その分コストや社内リソースを多く割かざるを得なくなります。 ポジショニングで新たな価値を? ところが、商品自体を変えずにポジショニングを変えることで、新しい顧客に価値を見出してもらうという考え方は非常に新鮮でした。このポジショニングの考え方は、有形商材を扱うメーカーには向いているかもしれませんが、無形商材である旅行商品にどう適用するかのイメージがいまいちつかめません。 海外旅行との提携は? 現在所属している部署では、海外の旅行会社と提携して商品造成や手配業務を行っています。そのため、今回のポジショニングの考え方を応用する機会が少ないように感じます。ただし、旅行業界全体の中で、会社がどのポジションにあるのか、どのような根拠に基づいてそれが設定されているのかを考えてみたいと思います。 旅行商品の成功事例は? 具体的には、以下の点について調査したいです: - 旅行商品において、ポジショニングを変えることで新しい顧客に価値を提供した具体例(アウトバウンド/インバウンド) - 過去に旅行商品がポジショニングを変えることで成功した事例(アウトバウンド/インバウンド) - 現在の会社が展開している旅行商品の種類とそれぞれのポジショニング - 他社と比較した際に、自社のポジショニングが適切か、他社と被っていないか、または他社が狙っていないポジションがあるのかどうか これらを踏まえ、旅行商品におけるポジショニングの新たな可能性を探りたいと思います。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

自分を客観視できる? 今週の学習で最も印象に残ったのは、「自分の考えを批判するもう一人の自分を育てる」という視点でした。人は無意識のうちに偏った思考に陥りがちなため、客観的に自分の考えを振り返る力が重要であると感じました。また、反復して考える習慣が思考のクセをつける上で効果的であり、業務に学んだ知識や教訓を取り入れる「自分化」の考え方にも共感しました。現在、財務関係業務を担当しており、経験が浅い中で多角的かつ客観的な思考の必要性を日々痛感しているため、クリティカルシンキングを通じて自分の立ち位置や課題を明確にし、論理的に考える力を養いたいと考えています。 本当に見落としない? また、今週の学びは自身の情報分析業務においても大いに役立つと感じています。業務では、さまざまな情報を基に評価の前提を組み立て、妥当な見解を導く必要がある中で、「本当にこの判断は適切か?」「他に見落としがないか?」と自問する姿勢が欠かせません。過去には情報の選び方や判断に自分の思い込みが入り込んでいた可能性もあり、客観的に考える力をより一層磨く必要性を実感しています。今後は、情報整理の際に論理的なツリーや適切な枠組みを意識し、思考の偏りを防ぐ努力を続けたいと思います。また、導き出した結論を関係者に伝える際に、分かりやすく納得感のある説明ができるよう、言語化と構造化にも注力していく所存です。日々の業務の中で意識的に思考を反復し、クリティカルシンキングを実践に落とし込む努力を続けたいと考えています。 偏りをどう修正する? これまでの業務で、自分の思考に偏りがあると感じたときには、どのようにそれを検証し、修正していますか? また、そのプロセスを通じて得た気づきや工夫があれば教えてください。

データ・アナリティクス入門

比較で浮かび上がる数値の真実

データ分析の意味は? データ分析とは、目の前にある数値だけを見るのではなく、比較を通して全体像を把握する作業です。見えていない情報にも仮説を立て、その仮説を検証していくことが重要だと感じました。また、分析対象の情報が本当に分析に適しているか、すなわち同じ条件で比較ができるかどうかを考える必要があると再認識しました。 従業員調査の見方は? 従業員サーベイの結果を集計・分析する際には、勤続年数や部署ごとの違いなど、比較するための項目を設定し、その項目ごとの数値の違いを検証する手法が有効だと思いました。過去と現在のデータをグラフで比較すると、経営陣にも伝わりやすい形で分析結果を示すことができると確信しています。今後の学びを通じ、より良い分析手法を身につけたいと考えています。 評価の背景を読む? また、評価の集計においても、単に数値を合算するだけでなく、個々の数値を詳細に分析することで、評価の変動に対する背景(仕事の内容や健康状態など)を把握し、人事としての原因究明に役立てられると思いました。 導入検討時の比較は? さらに、物品やシステムの導入検討時も、購入したい対象の販売元のデータだけに依存せず、導入の目的や他の製品との比較を行うことが重要だと感じました。例えば、現状のシステムから変更する際、どの点で改善が期待できるのかを明確にすることが求められます。 条件判断の極意は? 最後に、同じ条件での比較という考え方についてはなんとなく理解できましたが、本当に同じ条件なのかをどう判断するかという具体的なコツについては、まだ疑問が残ります。データ分析初心者として、わからない点が多い中で、皆さんと一緒に学びながらより深い気づきを得られればと思っています。
AIコーチング導線バナー

「過去 × 現在」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right