- 結果逆算で根本原因を把握
- 数字背後と定性情報に注力
- 仮説と視野で分析を実践
結果から問題設定は?
問題や課題を解決するには、ただ漠然と分析するのではなく、まず結果から逆算して問題を設定し、その根本原因を把握することが重要だと学びました。表で示されたデータを図に起こすことで、全体像を俯瞰しやすくなり、どこに課題が潜んでいるかを明確にできると感じました。
数字の裏側は?
また、計画値と実績値のギャップが全体にどの程度影響しているかをパーセンテージで示すことは、単なる数字の大小だけでなく、その背後にある要因を突き止め、分析の精度を高める上で有効です。単に数字が大きいという事実に注目するだけでなく、継続して損失が出ている状況など、現場での定性的な情報も加味し、何を最優先で分析すべきかを決めることが大切であると感じました。
分析の切り口は?
さらに、すべてのデータが整っているわけではないため、まずはどの切り口でデータ分析を行うか、仮説を立てた上で手元のデータを整理、収集する姿勢が求められます。データに向かう前に、視野を広げ多角的に問題を捉える体制を整えることが鍵となります。
現状と理想は?
また、現状(as is)と理想(to be)のギャップを明確にすることが重要です。何を理想とするのか、どこにギャップがあるのかという点を関係者全員で合意することが、問題解決のスタート地点になると理解しました。
解決策の整理は?
問題解決には、改善を目的とするアプローチと、さらなる向上を目指すアプローチの2つがあり、ロジックツリーのような思考整理のツールは、全体を複数の要素に分けて検証する際に非常に役立つと感じました。具体的には、層別分析や変数分析などを駆使して、細部にわたる解決策を検討することが効果的です。
その他の注意点は?
加えて、全体の中で『その他』に分類される割合が大きくなる場合は、データの切り分け方が適切かどうかの見直しも必要です。数値上は少数であっても、影響力が大きい要素には十分な注意を払うことが重要だと思いました。
戦略分析はどう?
広報戦略や施策の検討においても、ロジックツリーなどを活用し、どの視点からデータを分析すべきかを考えることが有効だと感じています。また、ウェブから得たデータを単に眺めるのではなく、具体的な問題や課題を設定し、何を知りたいのかを明確にすることで、分析の精度を大いに高めることができると思いました。
定性情報は何?
こうした定量的な分析に加え、定性的な情報も取り入れる事例を学ぶことで、納得感を持ちながら現場の試行錯誤をより深く理解できるようになったと実感しました。
勉強することを長らく忘れていましたが、
若い受講生の姿を拝見し、
一生勉強だなと感じさせられました