0%
あと3分で読了
point-icon この記事のポイント!
  1. 3C・4Pの軸で仮説構築
  2. 網羅的整理が肝心だ
  3. 検証とフィードバック重視

仮説はどう生まれる?


まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。

私の仮説偏りはなぜ?


また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。

実践はどう進む?


具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。
※上記の投稿は、受講生より許可を得て掲載しています。

関連記事

【2025最新戦略】マーケティング・ミックスとはexternal link
help icon

ナノ単科とは?

実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
R.M
20代 女性 一般社員/職員
受講科目
データ・アナリティクス入門
実践につながる 学習習慣が身に付く 仲間と学び合える

総合演習でデータ加工を実践できると思ったのですが、筆記のみだったので、今までの学びが身についたか試せなかったのは少し残念です。
ポータルの話でいうと、一度見た動画を早送り・巻き戻しできないのは不便でした。

avatar
A.S
30代 女性
受講科目
データ・アナリティクス入門

良かった点
データ分析の前提の考え方、意識すべきことが体系的に学べた。
違う業種の人の意見が聞けたのも貴重な機会だったと思う。

気になる点
口コミ通りといえばそうだが、想像していたよりも実践的なことは割と少なかった印象がある。
アプリやページの不調があったのが気になった。
また、グループワークはテーマによってグダグダ感が出てしまった時があった。

avatar
Y.M
30代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい モチベーションが上がる

大変有意義な1.5ヶ月でした。データ分析を学びたい!と飛びつきましたが、課題解決スキルが根本的に重要であり、その中でデータ分析がどう活かされるか?の流れを実践とともに学びました。
育児と仕事との学びの両立に苦戦しましたが、なんとか食らいついてよかったです!ありがとうございました。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right