データ・アナリティクス入門

理想と現実をつなぐ論理ツリーの魔法

ギャップをどう認識する? 問題解決の4ステップのうち、特に「What」に注目し、あるべき姿と実際のギャップを定量的な指標(戻り作業件数、作業にかかった工数、提案件数など)で明確に合意することの重要性を学びました。また、原因分析ではロジックツリーを活用し、検討内容を「もれなく、ダブりなく」分けながら視覚化する方法についても理解が深まりました。 議論の進め方はどうする? 議論に先立ち、まずメンバー全員で各ステップやロジックツリーの使い方を確認することで、効率的な打合せの進行が期待できると感じました。たとえば、自グループの課題を「あるべき姿に届いていない事柄」と「ありたい姿に到達させたい事柄」に分け、さらに緊急度や重要度の観点で項目を設定し、課題をリストアップします。その後、部門の評価基準に沿ってグループ化・絞り込みを行うことで、議論の視野が広がり、参加メンバーの納得度も向上すると考えています。さらに、年間のグループ目標設定時に、ロジックツリーを用いた項目分けも取り入れ、数多くある課題の中から重点項目を絞り込む議論の場を設ける予定です。

データ・アナリティクス入門

データ分析を変える前に目的確認の力

データ分析の目的すり合わせとは? 講義内のグループワークでは、上司と部下の間でデータ分析の目的をしっかりとすり合わせる重要性についての議論が特に印象的でした。コミュニケーションが一方通行になっていないか、それぞれの思い込みをそのままにしていないか、データ分析に入る前に行うべきことがあると再認識しました。 目的の共有で生まれた変化は? そこで、「データ分析前の目的のすり合わせ」を意識し、今週の業務に取り入れてみました。業務内容としてはデータの取り扱いが簡単なものであっても、その目的を明確に部下に説明すると、彼らの表情が明るくなり、納得感が増したように思います。 データの共有は次にどう活かす? 日々の業務は多種多様なデータの取り扱いの連続です。目的やデータの見方について、社内で共通の認識が確立している場合もあれば、単にデータをまとめて共有するだけで次のアクションにつながらない場合もあることに気づきました。今後は社内でグラウンドデザインの共有を進め、各種データの目的やKPIとしての活用方法について議論を深めていきたいと思います。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

仮説力が拓くあなたの未来

仮説をどう検証する? 仮説を検討する際は、決め打ちせずに複数の仮説を出すことが大切です。加えて、それぞれの仮説が補完し合い、異なる視点からの切り口を持つことを意識しています。自分の知見や簡単な検索だけに頼らず、3Cや4P分析などのフレームワークを活用することで、より精度の高い仮説が構築できると改めて実感しました。 提案の鍵は何? また、担当しているお客様に提案を行う際には、企業が抱えるビジネス課題やそれに対してどのような提案が有効かを日々考えています。しかし、時間の制約からホームページや業界情報の簡単な調査だけで済んでしまうこともあるため、本講座で学んだフレームワークを活用し、複数の仮説を立てる基本に立ち返ることを意識しています。 問題解決の秘訣は? 特に、問題解決のための仮説設定プロセスが非常に有効であると感じました。問題は何か、問題の程度はどれほどか、どこに原因があるのか、なぜその問題が発生しているのか、そしてどう対応すべきかという一連のプロセスをしっかり分けることで、仮説思考をより深めることができると考えています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

ロジックツリーで問題解決!私の成功体験

問題解決のプロセスをどう進める? 問題解決のプロセスは、WHAT・WHERE・WHY・HOWの順で考えていくことが重要です。特に、WHERE・WHY・HOWを考える際にはロジックツリーを活用してMECEに分解することが有効です。分解の方法には層別分解と変数分解の二つがあります。 キャッシュフロー改善の手法は? 事業の課題に対する対策を検討する際、この手法は非常に役立ちます。例えば、「キャッシュを黒字化したい」という課題に対して問題の原因を特定することができます。ロジックツリーを用いて、営業キャッシュフローを改善するのか、投資キャッシュフローを改善するのかといった視点や、どの製品が特に原因となっているのかを特定することができると考えました。 過去の実績から何を学ぶ? キャッシュ改善(WHAT)という視点において、まずは過去の実績からどの項目に特に原因があるのかを探り、特定の製品や項目に対して大きな変化がある部分を特定したいと思いました(WHERE)。その上で、それが起きている原因を特定し、対策について検討する計画です。

データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right